
Towards Applying Complexity Metrics to Measure 
Programmer Productivity in High Performance Computing
 
Catalina Danis, John Thomas, John Richards, Jonathan Brezin, Cal Swart, Christine Halverson, 

Rachel Bellamy, Peter Malkin 
IBM, TJ Watson Research Center 

PO Box 704 Yorktown Heights, New York 10598 USA 
1 914 784 7300 

{danis, jcthomas, ajtr, brezin, cals, krys, rachel, malkin} @us.ibm.com 
 
 

 

ABSTRACT 
In this paper, we motivate and position a method for measuring 
the complexity of programming-related tasks. We describe this 
method, Complexity Metrics (CM), and give a brief worked 
example from the domain of High Performance Computing 
(HPC). We are using the method to help determine the 
productivity impact of new tools being developed for HPC by 
IBM. Although we argue that the CM method has certain virtues, 
we acknowledge that it is a work in progress.  We discuss our 
strategy of complementing the CM method with knowledge we 
derive from applying other methods to better explore the complex 
issue of productivity. We end the paper with a discussion of some 
of the open issues associated with the CM method and plans for 
future work.     

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – complexity measures.  

General Terms 
Measurement, Design, Human Factors.  

Keywords 
Complexity, metrics, measurement, productivity.  

1. INTRODUCTION  
The increased hardware performance of computing over the past 
few decades, and more recently the realization of highly parallel 
computing, have enabled the possibility of significant advances in 
a wide variety of application domains such as weather forecasting, 
modeling of complex physical objects, airplane design, 
biochemical engineering and data mining.  Yet, that promise has 
not been fully realized largely owing to the difficulty of 
programming high performance computers which are typically 
highly parallel.  It is well known that even serial computer 
programming is a very difficult and error-prone task.  Some 
estimates are that between 50 and 75 % of overall effort and time 
in software engineering is devoted to the prevention, detection, 
and repair of errors in serial computer programs [13]. Dealing 
with highly parallel computing systems significantly increases the 
difficulty of prevention, detection and repair of errors. 
The domain of HPC, often called scientific computing, is very 
broad both in terms of the kinds of codes developed and the users 

involved.  Types of codes developed range from so-called 
“kleenex codes” which are typically developed by a single 
individual in a short period of time in order to try out an idea for 
an analysis and so are used only once, to multi-module codes 
developed over decades by large teams distributed in time and 
space.   The large HPC codes are typically developed by multi-
disciplinary teams that include both domain scientists, for 
example climate scientists knowledgeable about the atmosphere 
or about the behavior of clouds, and computational scientists, such 
as experts in data structures or in the communications 
characteristics of a particular HPC system. 

In recognition of the perceived gap between the performance 
being delivered by parallel machines and the capabilities of 
programmers to harness the performance to solve scientific and 
business problems, DARPA sponsored the High Productivity 
Computing Systems (HPCS) program.  This program which began 
in 2002, involved top vendors of HPC systems in a three-phase, 
eight-year effort to not only develop petascale machines but to 
also significantly improve the productivity of programmers who 
need to use such machines at scale. We are employed by IBM, 
one of two finalists in this program along with Cray, and are 
charged with measuring the productivity impact of the 
programmer tools that IBM is developing under the HPCS 
program. The program requires the vendors to demonstrate 
attainment of specific productivity enhancement targets 
attributable to the use of the vendor’s tools (ranging from IDE’s, 
to memory management tools to new programming languages) in 
order to satisfy program commitments.  

Productivity is a complex construct to conceptualize, let alone to 
measure. Previous approaches have adapted constructs derived 
from economic theory to define productivity on an organizational 
level [e.g., 27]. Such approaches suffer from being highly abstract 
and fail to provide guidance as to how measurements for the 
various terms are to be produced. Since it is impossible to 
examine anything but the smallest of codes from start to finish, 
and since code development in HPC is skewed towards multi-
module, long-lived codes, defining tasks for productivity 
assessment requires developing a strategy for sampling sub-tasks 
from the code development process for study. To this end, the 
HPCS community that organized around the DARPA program 
collectively defined “workflows” to specify the work of HPCS 
programmers and system administrators (we limit our focus here 
to code development scenarios).  The workflows are high-level, 



idealized descriptions of the component tasks that comprise, for 
our current purpose, code development, including writing from 
scratch, debugging, optimizing and porting code.  These 
workflows provide a shared landscape around which researchers 
can discuss the topic.  We have undertaken observations of 
programming behavior in order to generate the greater detail that 
is necessary to study programmer productivity with our method. 

Our approach, the CM modeling approach, is to define 
productivity for an idealized, expert individual in terms of  
performance in relatively small, individual tasks and to build up 
organizational productivity based on estimates of the frequencies 
with which the “measured” tasks occur in the work of 
programmers and weighted by the distribution of the skill level of 
programmers.  The CM method highlights three aspects of task 
performance: the number of actions needed to complete a task, the 
number of data items the individual operates on while completing 
the task and the number of task context switches required in order 
to complete the task. These three dimensions are implicated in 
productivity because of their impact on the amount of time to 
complete a task and on the opportunity for errors they occasion.  
The argument is that task complexity is inversely related to 
programmer productivity.   

The CM method we discuss in this paper is an analytic, rather 
than an empirical, approach.  While the basic outlines of the 
method are broadly consistent with research in psychology related 
to task performance, we are engaging in targeted empirical 
investigations to better ground the method in empirical findings.  
Furthermore, the CM method is only one of a group of approaches 
we are using to try to quantify the productivity impact of our 
tools.  As we discuss below, we are using these multiple methods 
to triangulate on our productivity assessments.  

2. RELATED WORK 
A number of related approaches have been advanced in both 
computer science and psychology. In general, the approaches 
stemming from work in computer science have attempted to 
measure productivity in the context of programming.  These 
include Lines of Code (KLOCs), function points [1], cyclomatic 
complexity [22], software science [14], and COCOMO [4]. While 
each of these approaches captures some of the complexity of 
software, they were primarily motivated by concerns such as an 
attempt to compare programmers, to predict how long a project 
would take or to compare the inherent difficulty of different 
programs rather than to measure the difficulty of writing 
essentially the same program with or without various tools. It is 
this latter motivation which primarily underlies our own work.  

In psychology, a variety of methods have been proposed to 
analyze and measure the complexity of cognitive tasks, of which 
programming serves as an example. These methods could 
theoretically be relevant to measuring the impact of tooling on 
programming.  Although a full examination of these approaches is 
beyond the scope of this paper, it is useful to briefly review some 
of them in order to position our own approach.  In order to 
understand these, it is useful to distinguish two related but 
separate threads of work. On the one hand, there are aspects of 
programming which often require creative problem solving and 
therefore methods arising from modeling of learning and problem 
solving are potentially relevant.  On the other hand, programming 
also often requires activity that is fairly routine, at least for the 
experienced programmer, and here, approaches of modeling akin 

to the work of Card, Moran, and Newell [7] are potentially 
relevant. 

Methods more appropriate to modeling the routine aspects of 
programming include, notably, GOMS [12, 16] and EPIC [19]. 
The human being, when viewed as an information processor, is 
obviously quite complex and applying such models to specific 
situations is typically time-consuming.   In cases where an 
economically significant number of users will be using a product 
for a significant amount of time, such approaches can be quite 
cost-effective despite the up-front modeling costs [12]. For 
example, an analysis that identifies the potential to save a few 
seconds off of a process that is done by several thousands of 
workers can translate into significant savings. However, in other 
cases, such as HPCS where systems and applications are 
developed for a small number of users, an analysis of such 
precision is problematic. To address this issue, a tool, called  
CogTool [8] has recently been developed to make the construction 
of such models much easier.  We are exploring the possibility of 
using CogTool to build models for routine programming tasks. 
However, in this paper we present an approach which is motivated 
by some of the same psychological research but is simplified to 
include only three major and relatively simple predictors of 
behavior: number of steps, context shifts, and memory load. 

3. OUR OTHER APPROACHES TO 
MEASURING PRODUCTIVITY  
3.1 Observations  
As background for the more focused work of CM, we have carried 
out a series of “real-world” observations, interviews and surveys 
with HPC programmers and individuals in various “support” roles 
such as consultants and help desk personnel [9, 15].  Such work 
provides grounding for the definition of ecologically valid tasks 
for modeling with the CM method. It also provides data that will 
enable us to weight the tasks we will model based on their overall 
contribution to programmer productivity. 

3.2 Interviews with tool makers   
Because the suite of tools that is being developed in IBM to aid in 
the various tasks of parallel programming is extensive, we needed 
to identify the tools that would be expected to provide the highest 
productivity enhancement potential to programmers.  To this end, 
we conducted a series of interviews with each of the tool 
developers.  Based on these interviews, we then created a 
spreadsheet relating tools, availability, users, and workflows.  
This provides guidance to us for focusing our CM work where it 
is most appropriate. 

3.3 Experiments 
In addition, we have collaborated with various DARPA HPCS 
“mission partners” (i.e., labs in the United States that are potential 
users of the systems that will be produced through the program) to 
identify some representative HPC tasks. We have used somewhat 
simplified versions of these to gather empirical data about 
productivity, initially focusing on tools available at the start of the 
HPCS program in 2002 (hereafter, the 2002 baseline) and 
eventually comparing these to the tools that will be available at 
program completion in 2010. In addition to providing some direct 
empirical data about the overall productivity possible with the two 
sets of tools, these studies also provide further grounding for 
estimating the frequency of tasks as described above.  We 
measure both time to completion and quality of code. 



3.4 Use of Workstation Instrumentation  
Our empirical work relies on the instrumentation of workstations 
and development environments for the automatic capture of 
programmer behavior at a fairly fine grain.  In a previous 
empirical assessment of 27 novice programmers done in 
collaboration with colleagues at the Pittsburgh Supercomputing 
Center [10], we used a tool they developed called SUMS [24]. In 
our more recent work aimed at assessing the 2002 baseline, we 
have been using an open-source tool called Hackystat developed 
by Philip Johnson and his colleagues [17].  

Ideally, productivity assessments would rely on direct 
measurements of programming in the “real world,” documented 
through workstation instrumentation and supplemented with 
human observation.  However, the large-scale  nature of typical 
HPC codes makes this impossible.  Even if one were to follow a 
code development from start to finish, over the years or decades 
required, the results would preclude generalization and thus be of 
limited use.   

 

4. COMPLEXITY METRICS METHOD  
The topic of psychological complexity, its definition and 
measurement, and its relationship to related concepts such as 
uncertainty, stress, and productivity is itself a wide-ranging and 
complex topic far beyond the scope of this paper (See Thomas & 
Richards [28] for a more thorough review). The complexity model 
we are focused on in this paper was originally based on the work 
of Brown, Keller and Hellerstein [6] and has been found useful 
despite the simplifications from full-blown psychological theory.  
This model measures complexity along three dimensions: the 
number of steps in a process, the number of context shifts, and the 
working memory load (that derives from data operations) required 
at each step.  It is capable of giving overall metrics of complexity 
for completing a given process with different tooling and is also 
capable of locating those particular steps that are particularly 
complex in terms of memory load.  In this section we give a brief 
rationale for focusing on these three contributors to complexity.   

4.1 Rationale for Number of Steps 
One premise of the CM method is that the number of steps in a 
process can give an estimate of task complexity.  We argue that 
the more steps that are required, the greater the complexity and 
chances of error for the programmer and consequently, the lower 
the productivity. 

Of course, not all “steps” are equal and so using the sheer number 
of steps as a metric is somewhat limiting (we will expand on this 
limitation later).  However, in most of the tasks we have studied 
so far (installation, configuration, simple administration and 
simple component programming and debugging tasks), the steps 
can be defined fairly objectively in terms of the task requirements 
within a given style (e.g., a graphical user interface (GUI) vs. a 
command line interface (CLI)).  In GUI’s, every new dialog panel 
or screen is considered one step.  In line-oriented interfaces, every 
“Enter” is considered to mark the end of a step. These conventions 
presume some level of familiarity with the interfaces (which 
seems an appropriate assumption in the context of HPC).  
Typically, in comparing alternative products or various versions 
of one product, the “steps” are fairly similar in “size” (except as 
captured in the other two metrics; i.e., memory load and context 
shifts).    

There are two additional dissatisfactions or shortcomings with the 
model as applied to straight-line processes.  One is that it does not 
capture the complexity of the reading that is required either on the 
screen or with accompanying documentation in order to carry out 
a step.  The second is that it does not measure how much 
background knowledge is required to decide which items need to 
be noted for future reference. (As expanded upon in Section 6, we 
are working to incorporate these nuances into the model). 
Nonetheless, in general, as processes gain more steps, there is a 
roughly monotonic increase in the chance of an error and 
certainly, an increase in time.  As these tasks are performed in the 
real world, each additional step also increases the probability of 
being interrupted by some other task. Although the impact of 
interruptions is complex, they typically increase the chance of 
error and require the user to use some added time to recover state.   

4.2 Rationale for Context Shifts 
Context shifts were originally defined [6] in terms of computing 
contexts (e.g., server vs. client or operating system vs. data base).  
We have kept such changes as context shifts but broadened the 
definition to include shifts between applications or between 
installation components.  The rationale is that if an installation 
requires the installation of three sub-components, these 
components often have somewhat different appearances and 
conventions.   

Context shifts can be directly disruptive to working memory by 
requiring time and mental effort to orient to the new context.  In 
addition, different contexts often employ different conventions 
and this can cause interference resulting in longer latencies, a 
greater chance of error, or both.  For example, in some 
applications, clicking on the little red X in the upper right hand 
corner closes that window while in other applications, that same 
action may close the application (and all subsumed windows). In 
some applications, a SAVE command will utilize the user’s 
current place in the hierarchy to determine where something will 
be saved, while other applications will not.  Shuttling between 
these variations in conventions increases the chances of error.  
Even if no errors occur, the requirement to mentally “keep track” 
of which kind of application one is currently in probably impacts 
working memory load.  Again, another chief advantage of using 
context shifts is that it is relatively easy to objectively obtain from 
the detailed task description of doing a task in a certain style. 

4.3 Rationale for Working Memory Load 
Working memory load [23] is concerned with the data used in a 
process and how it must be manipulated by the user. Working 
memory load is increased whenever the user sees something on a 
screen that must be remembered and used for some future step.  
Again, in detail, we know that the actual working memory load 
will depend on the type of item that needs to be stored and on the 
user’s experience and strategies. However, as a first 
approximation, each new “item” that the user must attend to and 
remember increases felt complexity as well as increasing the 
chance for error.  Even without error, it takes longer to recover a 
particular item from working memory if there are more items 
being retained.  While this memory load is probably an important 
factor in task complexity of any sort, it is likely to be particularly 
disruptive in programming tasks which often require the 
programmer to mentally track an inordinate number of items.  We 
should note that this “working memory load” is different both 
from the much more limited primary memory (for example, the 
ability to repeat a phone number that was just spoken by another 



person) and from what is stored in “long term memory” (for 
example, memory for well learned information).   

4.4 Programming and Complexity Metrics 
One of the main problems facing researchers interested in 
quantifying the productivity value of tools for the HPCS 
programmer (or for any programmer) is to define programming 
tasks that are both representative and tractable for measurement.  
This is true whether one is observing actual programmers or 
modeling their performance using techniques such as the one 
discussed here.  In the portion of our work based on programmer 
observation we are focusing on the creation of fairly small 
“compact codes” proposed by the HPCS community as 
representative (the Scalable Synthetic Compact  Applications, see 
[3]).  In the work described here, we begin by modeling the more 
routine and repetitive aspects of code development (such as 
creating a new project, and looking up API documentation), 
gradually expanding our coverage to more creative parts of the 
programming task.  We believe that the more creative parts of 
programming may benefit from another approach such as 
information foraging [21, 25].  

5.  BRIEF WORKED EXAMPLE  
We illustrate the use of the CM method by analyzing the behavior 
required of a programmer seeking help on an MPI function he or 
she is incorporating into a program.  In this example we contrast a 
hypothetical programmer Sam using the VI editor combined with 
a browser, with a hypothetical programmer Allie using the open-
source ECLIPSE based PTP/PLDT IDE [11].  
We begin the analysis with Sam looking at a VI editing session 
containing his partially written code.  He has just typed the MPI 
function MPI_Reduce which he will use to collect the results from 
calculations done on many processors into a single value, but he 
does not recall the exact parameters the function utilizes.  To get 
help he will go to a site on the web that has a tutorial on the MPI 
library and get the details he needs.  The following are the actions 
he might produce in order to find the information and incorporate 
it into his program. Of course, different programmers will have 
different techniques to accomplish these same goals, for example 
going to manpages or books. 
In this example, we assume that Sam already has a browser started 
on his workstation desktop.  In Table 1, we see that his first action 
requires that he change context from his edit session to the 
browser session. This involves clicking on the browser icon (of 
the seven assumed to be) on his workstation task bar.  Note that 
the number of alternatives among which he must choose is data 
dependent (discussed below under Open Issues) and will therefore 
vary by individual programmer.  He then selects the “bookmarks” 
menu item from the menu bar, which is the fifth of seven items 
arranged on the Firefox browser menu bar. We then make another 
assumption, namely that Sam has the MPI help site bookmarked 
and thus does not need to search for a site that might provide 
appropriate help.  He then scrolls down the list of bookmarks (the 
size again varies by individual) and clicks on the MPI help site 
(we have arbitrarily identified this as the 17th item in a list of 501). 
He then has to find the MPI_Reduce function for which he needs 
help.  He might do this in a number of ways.  We assume that he 
                                                                    
1 Data details such as the number of alternatives for an entered 

data item do not currently impact the modeling results though 
they are tracked.  

types the function name into a search field.  He then clicks on the 
link provided him and arrives at the appropriate help page.  He 
reads the help page and must retain the information until he can 
enter it into his editing session. (Alternatively, he might use copy 
and paste to accomplish this goal.)  After reading it, he returns to 
his edit session and in his final action, completes specifying the 
parameters for the MPI_Reduce function.   

Table 1: Actions, context shifts, data items and memory load 
to complete help task using the VI editor and an MPI help site 
on the web.  

               
ACTION 

Context 
Shift? 

                   
DATA 

MemoryLoad? 

Change context 
to browser 
window by 
clicking on 
browser icon 

✔ Select one of 
seven icons on 
task bar  

✔ (name of 
function for 
which help is 
needed) 

Select the 
“bookmarks” 
menu item 

 Select fifth item 
on browser 
menu 

 

Select the MPI 
help site 

 Click on 17th of 
50 items  

 

Find the 
MPI_Reduce 
function  

 Type in 
MPI_Reduce 
and press enter 
key 

(end of 
memory load 
retention period 
for function 
name) 

Go to the 
MPI_Reduce 
page 

 Click on 
MPI_Reduce 
link 

 

(Read help on 
MPI_Reduce – 
not counted as 
action) 

  ✔(name of 7 
MPI_Reduce 
parameters) 

Place focus on 
window with VI 
session 

✔ Click on visible 
shell window 

 

(Enter 
parameters for 
MPI_Reduce – 
not counted as 
action) 

  (end of 
memory load 
retention period 
for parameters) 

 

Table 2 shows the comparable actions for our hypothetical 
programmer Allie who is using the Eclipse PTP/PLDT IDE to do 
her programming.  Like Sam, she has just typed the MPI function 
MPI_Reduce when she realizes she needs help to complete the 
specification. Her first action is to select the MPI_Reduce 
function name in her code.  She then presses the F1 key on her 
keyboard to activate context-sensitive help. This opens a view in 
the IDE that lists the function name.  At this point, in her third and 
final action, Allie clicks on the function name that is listed on the 
help view pane and the help content is made visible. When Allie 
returns to writing her code, placing her cursor on the MPI_Reduce 
function activates “hover-help” which lists the function name and 
its parameters, making it easy for her to enter the necessary 



parameters without having to commit them to memory or copy 
and paste them from the help materials. 

Table 2: Actions, context shifts, data items and memory load 
to complete help task using the Eclipse PTP IDE. 

               
ACTION 

Context 
Switch? 

                   
DATA 

Memory 
Load? 

Select the 
MPI_Reduce 
function 

 MPI_Reduce 
string 

 

Invoke help 
through keyboard 

 Cntrl + Function 
1  

 

(Read help on 
MPI_Reduce) 

   

(Enter parameters 
for MPI_Reduce) 

   

 

In the case of the PTP/PLDT tool, context-sensitive help allows 
the programmer to obtain additional information by merely 
selecting a string.  The Eclipse PTP system uses the current 
context to automatically perform some of the necessary navigation 
for the user.  In the comparable CLI case, the user must also 
explicitly remember what they need help on (or use the 
clipboard), then find the relevant help, and finally navigate back 
to the code (either remembering relevant information between 
steps, writing it down, or using more copy and paste steps).   
These additional steps and increased memory load will tend to 
increase time and errors.  In this particular CLI case, we modeled 
going to a website to find the relevant information.  We made the 
conservative assumption that the user had already bookmarked the 
correct file and had no trouble finding it or finding the correct 
function within the file.  Even with this assumption, traversing 
back and forth to a browser window adds additional steps and 
increases memory load. In this case, the user had to retain seven 
parameters in memory; in actuality this memory load will vary by 
user behavior2. In this example, the user working in the CLI 
environment had to produce six actions, undergo two context 
shifts, produce six data items and retain two data items and retain 
data items in memory on two occasions.  The comparable 
numbers for the IDE user are two actions,  two data items and no 
context shifts nor any instances of  memory load. 
 

6. OPEN ISSUES  
While we believe that CM is a promising approach for assessing 
the productivity of programmers using various HPC tools, we 
recognize that as a work in progress many open issues remain.  In 
the remainder of the paper we discuss three that we are working 
on and discuss paths we are exploring to resolve them.   

6.1 Levels and Types of Complexity 
The problem of assessing the complexity of the tools our IBM 
colleagues are developing to support programmer productivity is 
made more difficult because multiple sources of complexity 

                                                                    
2 As noted above, we could also have modeled the user’s behavior 

to have copied and pasted the function parameters instead of 
retaining them in memory.  

contribute to the task-tool-user nexus that we must model.  We 
have identified four types of complexity that are present in any 
measurement and discuss here how each impacts the measurement 
task: task complexity, tool style, tool implementation detail, and 
data complexity.  

The first source is task complexity.  Task refers to the work the 
programmer has in mind when he or she sits down to work, for 
example developing a parallel implementation of the Smith-
Waterman algorithm for local sequence alignment, adapting an 
existing program for modeling explosions to work with a new 
material or debugging code.  While the range in possible task 
complexity is great, we hold this source of complexity constant in 
our comparison.  That is, we look at the same task being done 
using two different tools, namely examples of tools used in 2002 
and tools newly developed for the 2010 timeframe.  

The tools we are testing contribute two sources of complexity.  
One source is the tool style or approach embodied in the tool, for 
example, a CLI versus a GUI.  An example might be the use of a 
CLI editor such as VI or Emacs compared to an editor developed 
for embedding within an integrated development environment 
(IDE) like Eclipse.  The complexity added by the tool style is the 
primary target of our measurement. However, it is further 
complicated by the presence of complexity due to the particular 
tool implementation details.  This source of complexity has to do 
with how well the tool is designed rather than being an intrinsic 
property of the tool style. This is a type of complexity we have 
previously described as being “undue” or “gratuitous” as 
contrasted with “intrinsic” complexity [28] because it typically 
derives from poor design and implementation (Fred Brooks [5] 
referred to this as “accidental complexity.”).  Much of the 
gratuitous (or accidental) complexity is removed from tools 
through the iterative process of user feedback and tool re-design.  
In this regard, our measurements of the 2010 tools can be 
expected to be at a disadvantage compared to the baseline tools 
since many of the 2002 suite of tools will have matured  through 
use and thus would be expected to have lowered gratuitous 
complexity compared to their initial releases.   
A final issue in the application of the CM method derives from the 
data conditions under which the tool is tested. This is because the 
method takes into account the memory load involved in using a 
tool and one source of memory load is the programmer’s 
operations on data.  For example, generating a data item, such as 
the path where a file is saved, and then having to recover that path 
in a later step is said to place a memory load on the programmer.  
While this source of complexity, which is particular to the usage 
of the tool, can be held constant in the tool comparisons we do, it 
could contribute differentially to the overall complexity in many 
of the measurement situations we might encounter (e.g., like the 
opening of a file).  In the example case, the user of the CLI 
environment might be generating a data item to specify the file 
from memory while the GUI user will be selecting it from a list of 
files.  In either case, the programmer’s task will be less complex 
when needed files are selected from a shallow hierarchy 
containing a small number of items compared with a deep 
hierarchy containing a large number of items. In general, we 
believe well-designed GUI’s probably minimize the impact of the 
number of the data items relative to CLI environments but in our 
comparisons, we try to make comparisons as “apples to apples” as 
possible.  

The indirect value that the CM tool provides for developers is 
primarily attributable to its usefulness in identifying the gratuitous 



complexity that derives from poor design.  Used as an analytic tool 
by the developers it provides the opportunity for the surfacing of 
usability problems (e.g., inconsistency in implementations of the 
“same” action in two different contexts) that have been built into 
the tool.  In addition, it may help designers and developers 
become more conscious of how data conditions also contribute to 
the complexity of the user’s task.  In some cases this might be 
amenable to re-design (for example, rendering a selection as an 
auto-completion dialogue instead of as a pick list).  We would 
expect the former to be less sensitive to increases in data 
complexity than the latter. 

6.2 What unit of work equals an action? 
In our discussion earlier, we noted that adopting various heuristics 
has enabled us to apply the CM method consistently because it is 
based on relatively simple definitions of what, for example, 
constitutes an action.  Adopting the heuristics was a temporary, 
tactical decision made in order to allow us to apply the metric and 
thus gain experience with it.   

A deeper conceptual issue related to what constitutes an action is 
illustrated with the following example from our experience in 
using the metric. Two of us (CD & JCT) were engaged in 
assessing our inter-rater reliability in applying the metric in 
preparation for training a third member of our team (PM) in its 
use.  In the course of making some assessments, we first discussed 
various heuristics we wanted to apply including the 
aforementioned one menu choice equals one action.  In the 
subsequent individual validation test measurements which 
included opening a file by traversing three levels of a menu 
hierarchy, a common action in programming tasks, one of us 
departed from the heuristic and coded it as a single action rather 
than three.  In our subsequent debriefing he noted that by the time 
of coding, that portion of the task was quite familiar so he thought 
of it as a single action.  

This raises the issue that expertise with using a tool or a style of 
tool has on the perceived complexity of the tool.  Clearly, we 
found the perceived complexity of a sequence of actions 
decreased as we repeated that task component several times over 
the course of a short period of time.  Thus, we realize that we need 
to include in our model a way for accounting for differential 
expertise with a tool. So, an experienced programmer might prefer 
to use keyboard shortcuts in a GUI and designers might be 
encouraged to provide them.   
The previous example raises personal style as another contributor 
to the determination of what constitutes an action.  Another 
member of our team (CS) is a very experienced programmer who 
repeatedly impresses his lab mates with his acts of computing 
prowess.  Nonetheless, he traverses directory hierarchies one level 
at a time, frequently followed by an extra action to confirm his 
previous action (e.g., listing the contents of the directory he 
entered). He wants the feedback to avoid mistakes that could 
result in a great deal of work to correct (e.g., installing a multi-
module system such as Eclipse in the wrong place in his directory 
structure).  Consequently, individual differences in work style also 
impact the actual use of a tool and we need to consider how we 
might bring such a factor into our measurements.  This factor can 
also interact with tool style, such that a tool which gives relatively 
little feedback following user action would likely lead to more 
defensive tool use. 

6.3 Number of Steps: Is more necessarily 
bad?   
In general, the interpretation of results from application of the CM 
is that a process that requires more steps to complete has greater 
complexity than one with fewer steps and therefore the one with 
fewer steps is “better” from the standpoint of productivity.  This 
argument is built primarily on the increase in the chance of errors 
and opportunities for interruptions as well as on the additional 
time required to complete the process. The question to address 
here is whether more steps is necessarily bad. 

An example will set the stage for this discussion.  Imagine a 
programmer using an IDE to start a new project.  In an Eclipse 
IDE, he would set several items, including the type of project he is 
starting, give the project a name and which compiler to use and its 
location. Now imagine two alternate, albeit somewhat extreme, 
implementations of the user interface.  In the first case, all the 
fields for which the user has to specify a value appear on a single 
screen.  In addition, the dependencies that exist between fields 
(e.g., deriving from Eclipse) are not indicated; instead the user has 
to infer them because seemingly at random, certain values for 
certain fields become unavailable for choosing.  Now contrast this 
with a the second case, where each field is presented on a separate 
dialogue, but it comes largely pre-filled and simply requires that 
the user accept the default in moving across dialogues to complete 
the task. 

In this example, it is not absolutely obvious that the second case, 
even though it has a potentially much larger number of actions is 
of greater effective (as opposed to measured) complexity than the 
first. True, the increased number of actions increases the 
opportunity for interruption and error, but since the data values 
are all or mostly all defaults, this task is very simple and may not 
increase the effective complexity for the user.  In addition, the 
greater number of steps may not produce an increase in time since 
a single action that is mapped on to a multi-field dialogue with 
hidden dependencies may require just as much time or more than 
moving through a series of simple dialogues.   

The larger number of steps may also not necessarily be bad from 
the standpoint of individual styles and the experience they 
embody.  As noted above, some programmers have developed a 
cautious style, taking extra actions to confirm that a mistake has 
not been made based on their experience that some errors can be 
very costly to recover from.  Interface styles might be 
differentially suited for a cautious style.  One implication would 
be that applying the CM might require that we model a suite of 
users, including cautious ones.  Furthermore, the need for 
providing state feedback has been discussed in the HCI literature.  
 

7. FUTURE WORK 
We intend to address open issues, of which the above three are 
important examples, by leveraging the work we are already doing 
in the empirical assessments of programming behavior and by 
also carrying out some additional targeted lab experiments.  As 
we noted earlier, we are gathering data that allows us to examine 
programmer behavior as they code real world examples of 
problems.  In addition to allowing us to assign weights that enable 
us to calculate the contribution of certain tasks to overall 
productivity, these observations will help us identify the 
alternative ways that programmers of different skill levels use to 
complete a task (e.g., remembering a set of parameters vs. 



copying and pasting the information from one source to the target 
environment).  It is very important for us to be able to ground the 
tasks we model in real world programmer behavior since there are 
multiple alternative ways to reach any goal.  

We are also planning on using targeted empirical investigations to 
make further progress towards grounding the CM method in 
actual programming practices.  This is particularly important in 
regards the question of what constitutes an action.   One way that 
we plan to explore this is through lab studies in which we have 
programmers explain a task (such as starting a new project) to 
other programmers.  In our studies we plan to make use of an 
established phenomenon in language studies in which a person 
explaining something to someone takes into account the 
knowledge level of their interlocutor.  By varying the skill level of 
both the “teacher” and the “student” we should be able to discover 
whether expertise and other factors have an impact on the unit of 
behavior that constitutes an action. 
The current model of behavior that is assumed by the CM method 
is quite simple and our empirical work is also serving to identify 
places where it must be extended.  For example, in addition to 
considering skill level in the models, we also need to consider the 
complexity of data and the contribution of time to complete a task.  
We noted that the behavior models to which we apply the method 
presently consider data operations in the most rudimentary 
manner.  We simply note if an item of data must be retained in 
memory for later utilization, but there are additional factors to 
consider. For example, as our brief worked example showed, there 
are tradeoffs between memory load and additional actions.  We 
are further planning to explore how different types of data 
conditions (e.g., selecting among 2 or 50 alternatives, self or 
other-generated data items) and expertise in the task impact 
memory load.  

And, finally, time is an obvious parameter that must be added to 
the model since the time to complete a task is a fundamental 
measure of how productive an individual is. One way we are 
considering bringing time into the model is to measure the impact 
of different tools on the completion of the more routine and 
repetitive tasks involved in programming on the completion of the 
more creative parts of the programming task, for example the 
coding of a complex procedure. The former more routine work is 
amenable to modeling and we are wondering if the complexity of 
completing such tasks might have a “carry-over effect” on the 
more creative aspects of programming which are not as generally 
amenable to our current method3. Does, for instance, the greater 
working memory load typically imposed by CLI style tools make 
it more difficult to imagine all the pathways of a complex 
algorithm?  In closing, we believe that the CM method has 
promise and we are excited about the opportunities for expanding 
it and putting it on a sounder empirical basis. 

7.1 The Iterative Development of the Tool 
Although we argue that the CM approach is less time-consuming 
and requires less training than many alternatives such as building 
detailed user models or carrying out extensive user studies, the 
approach still needed to be supported with tooling.  The original 

                                                                    
3 Selected parts of coding operations can be measured with the 

method, for example, where new functionality has been 
developed for operations such as barrier matching that is 
required for coordinating operations on multiple processors.  

model we adopted took a detailed XML description of the task as 
input. We thought it unlikely that developers would use an 
analytic method that required this.  Therefore, we developed a 
GUI tool to allow users to define the key model elements -- tasks, 
data, action steps, context switches, and memory load -- without 
having to directly write XML.  The tool was used by a small 
group of people for some months.  Interviews, observations, and 
spontaneous comments were all used to identify usability issues 
that were corrected in a later version.  Later, a complete re-write 
was carried out based on further use on a number of different 
tasks by a number of different users.  We will continue to iterate 
on the tool in order to minimize the effort required and to 
maximize the reliability of the method. 

More broadly, we believe these same tools can have wide 
applicability within the software development process.  For 
instance, since we are using a “simple” modeling approach, 
developers of any tool, system or application should be able to 
create a useful productivity estimate relatively quickly and easily 
(compared with either detailed modeling or extensive user testing 
in real contexts).  Indeed, we have already used variations of this 
technique to provide feedback to developers to determine whether 
successive iterations of an installation procedure show increased 
or decreased complexity, to help locate sources of particularly 
complex interactions and to compare overall complexity among 
competing options.  
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