
Towards an Ecologically Valid Study of Programmer
Behavior for Scientific Computing

Christine A. Halverson, Cal Swart, Jonathan Brezin, John Richards, Catalina Danis,
IBM, TJ Watson Research Center

PO Box 704 Yorktown Heights, New York 10598 USA
1 914 784 7300

{krys, cals, brezin, ajtr, danis} @us.ibm.com

ABSTRACT
This paper presents the motivation, design rationale and
implementation detail of a study of programmer behavior in
scientific computing circa 2002. We discuss the constraints of
creating a retrospective baseline—the methods used, the necessary
conditions—and what we have learned. We examine the problems
of doing such a study and the difficulties of ecological validity in
a partly controlled setting.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – performance measures

General Terms
Empirical Studies, Measurement, Design, Human Factors.

Keywords
Empirical studies, metrics, measurement, productivity.

1. INTRODUCTION
Scientific computing, and its use of high performance computing
systems (HPCS), covers a wide area. Variations include the range
of problems being solved within a variety of organizational
structures: academic, governmental and corporate. Within these
organization types there is more variation in how HPC is
supported. Program teams may be as small as one and as large as
30 or more. Code construction itself ranges from single language
to multi-language (including scripting languages) and in size from
so-called Kleenex codes to large multi-module codes. Scientific
computing has a lot of issues in common with traditional software
(i.e. sequential code). As we shall see, it also has many that are
specific to it.

The motivation for this work comes from our participation in the
DARPA sponsored High Productivity Computing Systems
(HPCS) program. We are currently in Phase 3 of an eight-year
effort aimed at developing peta-scale machines and supporting
tools that significantly improve the productivity of the scientists,
programmers, data managers and system administrators who will

use them.

Our focus here is on programmer productivity. Decades of work
in software engineering have led to a number of theories and
findings. These do not necessarily apply however, to scientific
computing. As Shull et al [24] point out many of the underlying
assumptions pertinent to traditional software development do not
hold for scientific computing. Just one example is the importance
of machine specifics in the programming and running of codes.
Thus there are issues unique to understanding productive
programmer behavior writing sequential code, and there is a
whole new set of problems presented by the need for parallel
coding.

How to define productivity is itself not so simple. Is productivity
measured in relation to an individual, a team or a specific project?
What kinds of measures go into evaluating productivity? Is
productivity related to work done by the programmer? Or is it the
overall monetary gain from a particular project? While we are
aware of these difficulties they are not our immediate concern.
We are currently working with a modified economic model
(utility equals work divided by cost). What is more important for
us isn’t what measurements are chosen and how they are
calibrated. Evaluating a change in productivity—for example
increased productivity because of tool use—requires having an
established baseline that can be compared against.

For this project the baseline is defined to be 2002. Unfortunately
no one measured or recorded parallel programming behavior at
that time. To establish that baseline we need to capture
programmer behavior using operating environments and tools that
are representative of what various communities doing this sort of
computing actually used at the time. For this reason we are
working towards an ecologically valid study design. Ecological
validity refers to how close the method, setting, and materials
mimic the real world situation, that is real world in 2002. In
addition, the data we collect must also be appropriate for
comparing to similar tasks using new tools as they will be
performed circa 2010.
We shall map out here how a range of measurements and
techniques can be brought together in an integrated methodology
See Danis and Halverson [8] for a more detailed picture of
programmer behavior. In what follows we present the design of an
empirical study focused on baseline behavior in 2002. Our design
is working towards ecological validity within the scope of what is
possible and our deadlines. We discuss several data collection
techniques to collect measures that we will use to provide a
baseline of use against which new tool use can be evaluated. We
begin with a brief summary of related work. Section three focuses
on our empirical design and discusses the issues and trade-offs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright 2008 IBM Research.

leading to particular decisions. Section four presents a brief
scenario of the study in action and issues are raised for discussion
in section five.

2. RELATED WORK
Previous efforts to understand programmer behavior in general,
including productivity, have encompassed three main
methodologies: self-report via survey or interview, automated
measurement of machine-human interaction during programming,
and empirical studies – whether in the laboratory or in the field.
(For example, see Perry et al. [21, 22] for more field based
approaches; Hofer and Tichy [16] for a review of empirical
approaches in the last decade; and Basili et al [4] for lab based
empirical approaches.)

Previous efforts to understand parallel programming behavior
have used the same methodologies, but those efforts have been
comparatively limited. [10]). A recent trend has been so called
hybrid or integrative methods; that is studies that use several
methodologies in order to triangulate on a more accurate
understanding of behavior.

2.1 Studies in Software Engineering
There is a rich history of empirical studies of programmers and
programming since the 1960s. These studies fall into a number of
disciplines including psychology, computer science education,
human factors, information technology, and software engineering
(SE). Not surprisingly the domain of the researchers tends to
focus the study on those aspects central to their field as it occurs
during sequential programming practice.

Software engineering has gradually adopted an empirical model of
validation of new software concepts and tools, largely drawn from
psychology experiment models. Zelkowitz and Wallace [30] show
the increase in empirical validations in the literature from 1985
1995. Sjoeberg et al [27] go further, focusing on the rise of
controlled experiments in the literature from 1993-2003.

Productivity in computing was often equated to work, a natural
outcome of the recognition that application development was
taking too long and requiring greater human resource costs than
hardware costs. Thus metrics such as SLOC1 have been used as a
measure of programmer work and therefore productivity. (More
code does not necessarily equal more productive programming.
See [2] for some problems with using LOC as a metric). Various
measures related to completed lines of code have been suggested
and discredited. Subjects ranged from students to professionals
and studies used a wide range of methods from somewhat
controlled experiments to in depth field observations of
programmers.

2.2 Studies in HPCS
There have been studies in HPCS since the early 80’s. Some early
studies centered on specific machines (e.g., LeBlanc et al [18]),
while others focused on programming languages or parallel
environments (see Browne et al [5]). With the DARPA HPCS
program there have been a number of proposals redefining
productivity in terms of an economic model (e.g. see Snir and
Bader [26]. However, underlying all of these is programmer

1 Source lines of code

behavior and how to map that to metrics that can be used for
evaluating productivity.

The manner of data collection and the available subject pool have
largely constrained the method and measurements. As most
studies occurred in universities the available subjects were
students, usually in their first parallel programming class (e.g.
Hochstein et al, [14]). The programming task was generally one
assigned to the class, such as Sharks and Fishes [15], and the class
also dictated the programming language. Editors for coding and
machines for running were determined respectively by personal
preference and availability. Hochstein et al offers an analysis of
data gathered from 4 graduate classes at different institutions
programming classroom exercises. They point out the problems of
trying to compare across different languages and machines,
something that is not an issue in traditional software engineering.

As in earlier studies on sequential programming, data collection is
one of three types: manual, automated or hybrid, a combination of
the two. Hochstein et al [15] combined automated data gathering
using Hackystat [11] with manual data provided by programmer
self report as a hybrid method.

We have used a different combination for a hybrid – the
integrated methodology [8]. This method combines automatic data
collection (SUMS, [19, 20]) with concurrent manual observations.
These observations are taken by a trained independent observer
eliminating two of the problems noted with self-report data,
namely the interruption-causing context switching by the
programmer and the potential for conflict of interest in the content
of the programmer’s self reports.

2.3 Ecological Validity
Methodological differences aside, one of the pervasive problems
in empirical studies of programmers is how ecologically valid the
study is. Ecological validity refers to how close the method,
setting, and materials mimic the real world situation. Controlled
experiments are by nature set up to limit the variance in what is
being studied. This often means the circumstances of the study are
so artificially controlled that they cannot be ecologically valid.

The recognition of the necessity for ecological validity in
programmer studies is not new. In a special section of CACM in
1988 Schneiderman and Carroll [23] focused on the need for
ecological studies of professional programmers in their native
environments. The series of studies done by Perry et al picked up
this call again in the mid 1990s [21, 22]. In both cases researchers
were figuring out ways to study programmers in the wild resulting
in qualitative and quantitative data. However studies like these are
not always practicable.

To illustrate the difficulties here are just a few examples of the
variability and other issues that are related to our study.
Individuals customize their environments, making evaluations
between individuals difficult. In some cases our subjects may
work on classified work at least part of the time and the
organizational culture would have problems with us adding
sensors that record programmer actions on their machine. Thus
our goal for ecological validity must walk the line between what
is realistic for the setting and what is realizable for the study.

An additional issue related to this is the amount of data to capture
and how to capture it. Unfortunately the ideal—collecting all
pertinent data of programmer behavior and context in the real
world over the life of a project—is extremely difficult as well as

economically impossible. Our goal then is to develop a method
that provides us with the best data to understand productivity as it
pertains in the world of scientific computing in a realistic and cost
efficient way. In the following section we present our approach
using the integrated method and striving for ecological validity.

3. OUR APPROACH
The context of software development in scientific computing is
not homogeneous. From previous research we know that scientific
computing varies on several dimensions: organizational context,
characterization of code developed, programmer resources, and
code life.

In our field observations and interviews, coupled with the
literature, we find the following categories out of probably many
more.

1. Organizational context: Academic, Governmental, and
Corporate.

2. Code Type: New code, new feature in old code, code
maintenance, code refactoring, code reuse.

3. Problem characteristics: e.g. high data throughput,
computationally intense

4. Programmer resources: individual or team dedicated to
code over a significant part of the code lifetime

5. Code life: days, weeks, months, years, decades.

The DARPA HPCS Productivity effort addressed some of this
variability by developing a number of workflows that captured
scenarios of development. The most straightforward workflow to
address is that of a solo programmer writing code from scratch.
Perhaps the most difficult is a large team developing, and
maintaining a large multi-module code that has lasted over
decades. Steps to ensure ecological validity must vary with the
circumstances surrounding each of these scenarios.

We opted to start focusing on an individual, programming a
realistic problem that would be tractable in a reasonable amount
of time (no more than 2 days) and using the environment and tools
available in 2002. In the sections that follow we delve into each
of these areas.

Building on our earlier work [7,8] we are again adopting an
integrated methodology, but with some adjustments. In that study
we learned that given a limited amount of resources (trained
observers), it is better to observe a small number of subjects
completely rather than sample across all subjects. Thus, since we
cannot observe every subject in detail we have placed more
emphasis on non-intrusive automated data collection than direct
observation. However, a subset of subjects will also be observed
and video taped as a point of validation for the method.

3.1 Study Design & Tradeoffs
Unlike many studies our focus is not on measuring time to
solution. Rather it is to make sure that we see the usage detail
necessary to understand how a particular tool affects programmer
behavior and thus his or her productivity. Except in the case of
language comparisons, how fast the code runs is mostly a factor of
the machine and is not in this case pertinent.

3.1.1 Overall design
We have taken a ‘soup to nuts’ approach, covering a full
development effort from conception of the problem solution, to
coding, testing with provided data, and if time, tuning for better

performance. The setup for studying a single programmer seems
straightforward: one individual, one problem, one personal
computer (PC) and one supercomputer (SC). This simplicity
however obscures the many decisions and trade offs along the
way.

3.1.2 Problem
The ideal problem would be one that needs to be solved in real
life. However, there are a number of issues with using that kind of
problem. For example, some are very domain specific, requiring
deep domain knowledge to even understand the problem. In some
cases the solutions may be proprietary, or need to be protected in
some way, so it is difficult to get permission to collect detailed
data during a regular work process. Nonetheless, the problem
must be sufficiently realistic for comparison to actual practice. In
addition, what we are most interested in are those aspects of
programming that may be helped or hindered with tools. Thus the
difficult aspect of solving the problem, something that could take
weeks or more, is something that we want to minimize. Finally,
time limitations require a problem that is tractable but not trivial.

Our solution was to use one of the problems developed for the
HPCS program called a Synthetic Scalable Compact Application
(SSCA). (For details see Bader et al. [3]). SSCA1 presents a
problem of pattern matching, the Smith-Waterman algorithm
using for example gene sequences. While some domain
background in the problem description grounds it in genetics, the
problem does not require deep domain knowledge to solve. We
provide them with working serial code and ask them to parallelize
a portion. Making it parallel can be done in two ways: a more
difficult wave-front algorithm or a straightforward embarrassingly
parallel solution Unlike SSCA2, SSCA1 can be solved cleanly
using MPI, the dominant means in 2002, in exactly the way it was
designed to be used.

3.1.3 Machine Issues
Our objective in this study is to establish a reasonable baseline of
programmer behavior circa 2002 by studying programmers doing
a common parallel programming exercise using the kind of
machine and programmer tools then available. This means we
need to use the appropriate operating environments, tools and
languages.

We were fortunate to begin our study design on a machine that
was close to 2002 capabilities. The National Energy Research
Scientific Computing (NERSC) center’s IBM SP RS/6000
Power3—Seaborg—was brought online in 2001 and still had the
software and tools that fit our needs. As we cannot turn the clock
back to 2002 we believe that setting up a study of programmer
behavior under these conditions is the most reliable way to
establish a realistic baseline for future comparisons.

Our pilot subject used Seaborg until it was decommissioned in
January 2008. We switched our setup to Bassi—an IBM p575
Power5 system. While the computational capabilities—from chip
design to machine architecture—are somewhat different, in all the
ways that mattered for this study they were the same. That is to
say that we were able to provide the same software stack
(operating system, editors, mpi library and compile commands) as
we had on Seaborg. Our study subjects all used Bassi, removing
the problem of comparing across machines.

3.1.4 Laptop Issues
Previous field research and interviews indicated that many
programmers program directly on the interactive portion of a
machine’s nodes. However we have seen those who develop code
on a local machine and then upload and run the code on a
supercomputer [12]. For the purposes of the study laptops are just
as powerful as a desktop and much easier to move around. In
addition, by dedicated laptops we are able to install a base
configuration that can subsequently be used by the new
programmer tools necessary for the 2010 comparison.

We set up five identical ThinkPad T61p laptops for this study.
The base configuration required on the laptop was constrained by
three factors:

• the requirements of the automated data collection
software (Hackystat);

• what tools were available in 2002 and;

• the base requirements of the tools being developed.

Table 1 shows a summary of the operating environment and tools
used to configure both the laptops and Bassi for the study.

Table 1.

 Laptop Bassi
OS Fedora Core 6 Linux IBM POE, AIX
Editors Vim, emacs Vim, emacs
Shell Bash Bash
Languages Fortran 77 & 90, C Fortran 77 & 90, C
Message
Passing

MPI MPI

Web
Browser

Firefox. Limited to
NERSC and MPI
sources

none

Automated
Data
Collection

Hackystat
Slogger
Istanbul

Hackystat

3.1.5 Subjects
The range of contexts where parallel programming happens
argues for a range of subjects. We know that some organizations
have dedicated interdisciplinary teams with experienced
programmers, while others are constantly bringing in college
graduates with little parallel experience and seeing a large attrition
rate [12]. To address this we chose to focus on two levels of
experience. Experienced subjects are defined as having 10 or
more years of experience in parallel programming, while novices
were considered to have had at least one parallel programming
class and 3 years of experience programming. In this way we hope
to avoid the problem of separating out effects caused by just
learning parallel programming.

Finding subjects with these levels of experience, who have the
free time for such a study, is not trivial. We had no expectation
that we could recruit enough subjects in order to demonstrate
statistical validity and generalizability. Instead our focus is a
detailed analysis of a relatively small number of subjects resulting
in quantitative and qualitative results.

We proposed to recruit 10 subjects in each of the experience
conditions. Allowing for dropouts we hope to have a minimum of
8 in each. Why so small a number? In addition to the overall
programming experience, all subjects needed to be well versed in

the tools and languages circa 2002. There are other questions we
would like to explore; such as whether being trained in a science
rather than computer science leads to different programming
behaviors or productivity measures. However, having already
narrowed the pool of possible subjects by imposing the
requirements for ecological validity we felt that any additional
requirements would make the pool too small to recruit from
successfully.

3.1.6 Data Collection and Recording
In previous efforts we worked with the Pittsburgh
Supercomputing Center in a comparative language evaluation
[8,9]. In that study we used an integrative methodology gathering
data in three ways: automatically collected computer interaction
data via the PSC SUMS application [19, 20], detailed behavioral
data noted by trained observers, and, in some cases, video taped
data. SUMS collected extensive data, including recording the
command line interface (CLI) and application feedback displayed
on the screen, web browser activity, and a snapshot of the code
every 10 minutes. This provided us with almost more data than we
could use. PSC used machine learning techniques on the
automatically collected data in order evaluate it. Our observations
were used to fill in gaps where no automated data was collected
and to infer programmer intent in some cases.
We have since moved to using the Hackystat7 framework for
automated data collection. Hackystat [11] is an open source
framework for automated collection and analysis of software
engineering process and production metrics. Hackystat users
attach software "sensors" to their development tools, which
unobtrusively collect and send raw data about development to a
Hackystat web server for display and analysis.

Hackystat is designed to be extensible and configurable along
three primary dimensions: (1) the set of "sensors" (i.e. plug-ins to
development tools that gather process and product data); (2) the
set of "sensor data types" (i.e. structures that represent raw sensor
data of various types); and (3) the set of "applications" (i.e. server
side analyses that provide useful summaries of developer behavior
over time).

To provide this flexibility, Hackystat has an architecture
consisting of over 60 public modules that are organized into four
subsystems. The Core subsystem includes modules that provide
basic framework mechanisms. Modules in the Sdt subsystem
implement sensor data types. Modules in the Sensor subsystem
implement sensors for development tools. Finally, modules in the
App subsystem provide applications that generate useful analyses
over the sensor data collected by the sensors. As it was originally
designed for software developer to collect data on themselves the
sensors tend to focus on current tools and systems. This makes
using Hackystat attractive for instrument our 2010 tools, but
unfortunately means that we cannot take advantage of the full
wealth of sensors.

In our case, we attach the sensors to the development tools in each
laptop in advance and configure the laptop to automatically push
the data out to the server at the end of the programming session.
Like SUMS we can collect data from both the command line and
the editors. Unlike SUMS we do not capture the compiler
responses, nor do we have code snapshots over time or web
browser history. We use another piece of software—Slogger
[25]—to record web browser activity. This data is integrated with
the Hackystat data after the study is complete.

As we noted above, detailed observations as we did in our
previous study are extremely time-consuming. We wanted to
move to something that would be less person intensive. Video
data, while easy to record, requires fairly obtrusive equipment.
Our solution is to move to screen capture software to supplement
the Hackystat and Slogger data. While this data, like video,
requires time to analyze it does have the benefit of being
unobtrusive and automatic.

We use an open source project called Istanbul [16] for screen
capture. This does require a few additional steps to make sure it is
recording on each laptop, so it is not as unobtrusive or automatic
as Hackystat. It produces a file that uses the open source video
codec Ogg Theora. It can be viewed with both its own application
and VideoLAN [29] an open source player that handles Ogg
Theora.

3.1.7 Validation
Validation of this method is necessary along two dimensions. First
the study design and its details must be validated through a pilot
study. Separate from this is the validation of the various data
collection methods used. That is, are we getting the coverage of
data we need and is it sufficiently detailed and complete? This
was particularly important, as this was our first use of Hackystat.

We designed our pilot study to collect multiple sources of data
that could then be compared against each other. In this way we are
able to verify the accuracy and sensitivity of the data collected by
Hackystat as well as where there are gaps that need to be
addressed by another method.

3.2 Execution
3.2.1 Recruiting and qualifying subjects
We are lucky that our association with NERSC, and the proximity
of Lawrence Berkeley National Laboratory (LBNL) and
University of California, Berkeley (UCB) provide an appropriate
pool of subjects. The scientific computing world is compact and
overlapping within these three organizations. Our strategy was to
have a recruitment email sent out by the Associate Director of
NERSC targeting NERSC, the Computer Research Dept. (CRD)
at LBNL and the various outreach efforts into the larger
community. In addition we targeted several of the professors of
graduate level parallel classes at UCB.

Once subjects express an interest based on the rough
qualifications outlined in the recruitment email we send them an
additional survey to gather information about their experience
working in parallel programming, including classes, projects for
fun and paid work. If subjects qualified they were then scheduled
for a two-day session at an IBM office in San Francisco, CA.

3.2.2 Machine setup
The computational environment necessary for scientific
computing varies in both hardware and software. Having
determined the closest hardware (Seaborg) we had to do two
things. First we needed to evaluate what was currently on Seaborg
and how it compared to what was available in 2002. In most cases
this was a question of the software level available. While we
could not take software back to an earlier level we were able to
assure ourselves that the existing versions varied by an acceptable
amount. In addition we investigated which software predominated
in use. For example, TotalView [28] was the most commonly used
debugger, with some use of both dbx and gdb reported in the

annual user surveys. However, the exact usage was not tracked. In
contrast library use was tracked.

In addition, some software updates needed to be made to Seaborg
in order to use Hackystat to directly collect data from interactions
on the machine. These included the version of a Java compiler
necessary for Hackystat to run, as well as ensuring the levels of
Vim and bash were the ones supported by Hackystat. (When we
transitioned to Bassi we needed to duplicate these efforts.)

On both the laptop and Bassi we provide a directory that includes
a serial coding of the problem and a range of data sets it can be
run against. That code is capable of being compiled and run on
both machines. We duplicate this in another directory where we
ask them to work on their mpi code. We also provide a make file
and documentation about the problem. Each subject has a
dedicated account on Bassi that corresponds to their laptop name
for easy identification.

3.2.3 Task issues
The task or problem needed to be stated in a way that would be
sufficiently clear without giving away the answer. We had used
the same problem in our previous study, however in that case a
domain expert at PSC presented the problem. He was also
available to answer questions for an additional half hour. In
addition the study schedule provided a considerable amount of
time for subjects to think about the problem, including an hour or
so after the afternoon presentation, and overnight before
beginning coding the next morning.

In contrast we needed to present the problem in such a way as to
reduce the time necessary to understand the problem and its
potential solution. Needing to maximize the time available for
coding the problem motivated us to make it as straightforward as
possible.

3.2.4 Pilot
We did a pilot study in order to work out the details of the study
setup and to verify that we were collecting the appropriate data.
Our pilot subject was a NERSC retiree with many years of
experience in the HPC world. During the pilot we worked out
details of the interaction between machine configurations. We
were also able to refine the problem presentation significantly
based on his feedback. As he coded and parallelized the Smith-
Waterman algorithm we recorded data with Hackystat and
Slogger, observable programmer behaviors were noted by a
trained observer, and recorded the complete session on videotape.
Data analysis is now underway to detail where our measurements
are sufficient and where we need to look for additional data.

4. Study Scenario: An Example
Once subjects are screened and scheduled, then the study can
begin. In this section we briefly outline the various stages and
progress of the study.

4.1 Main study
For each session a setup process occurs to make sure all the
instrumentation is properly set up to record data. We can
accommodate up to 5 subjects at one time, although in practice it
is usually less. Once the subjects arrive and get settled in we cover
informed consent before beginning the main study. First we make
sure that everyone understands that the study is about patterns of
behavior rather than their skill at solving the problem. We
introduce them to the setup on both the laptop and Bassi—such as

where files are located—and then let them begin reading the
problem. Should there be any questions regarding the problem
statement itself we have the author available to answer questions.

The subjects begin working on the problem whenever they feel
ready. We provide them with a serial version of the code written
in C (on the laptop and as a printout). They have pad and paper as
well as a cheat sheet that summarizes the login commands for
Bassi and the run commands for the serial version of the code.
Almost all of their computer interactions are captured: command
line interface (CLI), editor, and web use. What is not captured is
their time not involved with the computer. In this case, where we
are largely looking at patterns of behavior interacting with tools
and in various coding phases, the lack of the other time is
acceptable. All subjects also have their screen recorded. For
additional validation one subject in each session is also video
recorded.

With multiple subjects in the same session we also get audible
interactions that are captured on videotape. Subjects are cautioned
not to confer about the problem but are able to share information
about working on the laptop or Bassi environment.

Most subjects spend an hour or so reading the problem, and
reviewing the existing code. Some may take notes, or draw
diagrams related to the solution. As some programmers think
better on their feet we allow them to get up and walk around the
building to think. An observer records the times they leave and
enter the session room. (This is possible because we have so far
run the study on weekends and the floor has been empty and
isolated.)

Everyone takes a break for lunch (about 45 minutes) and then
returns to the task. Some finish within a day while others return
for a second day. At the end, after collecting some additional
information and taking a post session survey the subjects may
leave. Rather than have them fill out the post session survey there
most subjects opt to have it emailed. They fill out the document
and email it back.

5. LESSONS LEARNED
So far we have recruited four subjects, three of which have
completed the study. (The fourth is being scheduled). It is too
early to present results, as data analysis has just started and is
ongoing. However there are a number of things we have learned
from our experience.

5.1 It Always Takes Longer
Most academics, and even corporate researchers, are familiar with
gaining the approval of their home institutional review board
(IRB) for a study using humans. In this case however, several
things complicated the process. As corporate researchers we do
not have the same requirements for CITI [6] certification required
by many academic institution. Getting our team certified added
extra time to the process. In addition we needed to pass two levels
of review: LBNL and their parent UCB. While this was not
difficult it was extremely time consuming taking about six
months.

Switching machines added another big chunk of time. Even
though Bassi was mostly up to date in the versions of compilers
and applications, we still needed to verify each one.

5.2 Recruitment and Experience
Subject recruiting was harder than we expected. In our previous
study we had found that DARPA HPCS participants were
unwilling to dedicate their personnel’s time for a full week. In this
case there were two differences. First, we had reduced the scope
of the study to two days for coding the problem. Second, we had
buy-in from NERSC management who agreed to let individuals
choose to do the study on work time, or they could do it on their
own time and get paid. For graduate students we thought that
offering to pay for two days, even if they finished in one, would
be added enticement. Neither of these worked exactly as
expected.

• We required subjects to travel to a nearby location that
was easily accessible to public transportation. However,
some expressed that this was too much to bother with.

• When we received IRB approval it was the holiday
season (between Thanksgiving and Christmas) before
we were able to recruit subjects. Not surprisingly many
potential subjects had plans.

• Students had some difficulty scheduling two days in a
row due to classes or meetings.

One issue we didn’t expect was related to experience. We did not
realize that experienced programmers might not be programming
regularly as part of their job. In particular several subjects were in
management and expressed how their skills were rusty, requiring
them to take time looking up MPI calls and other details. On the
other side, many of the comparative novices had lots of
experience, but not necessarily with MPI—further reducing the
available subject pool.

Finally, also related to experience, we were surprised that the
“obvious” solution to the subjects was the harder wave front
approach. In retrospect this makes sense, as the scientific
programmer’s job is to make sure that their code handles all the
edge conditions that could occur in the phenomena they are
modeling. It was an awkward situation to remind subjects that, as
one participant put it: “Things don’t have to be perfect. It’s ok if
the monkey dies.”

5.3 Old Habits are Hard to Break
Vi was the first visual editor for UNIX. It debuted in 1976 and is
still in use, although almost no one uses a true vi anymore, except
perhaps in scientific computing. This is not because they are all
using emacs. It’s because a number of offshoots have been created
that will work on operating systems other than UNIX. The most
popular of these is Vim, covering many laptop operating systems
as well as VMS. Hackystat’s sensors only work with Vim, not
with vi. Telling subjects to use Vim, and even reminding them, is
not enough to overcome ingrained habits. Our solution is simple:
alias vi to call Vim.

5.4 A Matter of Control?
As we mentioned earlier, we provided a working make file to
compile the program. Generally make files are perceived to help
the programmer by capturing all the routinely repeated, and often
arcane, actions necessary to build a program. We justified this
decision based on our experience that each supercomputer center
has very detailed and explicit profiles that need to go into make
files, leading at a minimum to providing templates.

Counter to our expectations almost no one used the make file. The
majority ran things manually from the command line. We

hypothesize that this may be due to their perception that this is
(comparatively) a toy problem. In that case we must ask ourselves
how we might capture the various issues that may only be
exposed in a more complicated example.

5.5 Accounts and Bassi, and Laptops! Oh My!
Resolving differences between machines raised some surprisingly
frustrating problems. We were lucky that all of our subjects had
already used Bassi, so they were familiar with it. In our pilot we
had trouble finding the right terminal type to interact with Seaborg
from the laptops. Several we tried produced extra characters on
one machine or the other. Luckily we discovered the right
terminal type and subsequently how to set the terminal type in
order to get syntax highlighting in Vim. All of this translated to
Bassi. However, Vim on the laptop continued to produce artifacts
in the code that sporadically appeared after uploading to Bassi.
We may never figure this out, but the participants still need to
manually correct them.

Issues that experienced programmers in this world take for
granted are things that we as researchers might not consider. Take
for example login accounts. With our pilot subject, the retiree,
they reactivated his prior account and had him change his
password. When he went to log in however the password did not
work. It seems the password change had not propagated around all
the nodes. He got around this by logging in on an administrative
node, not something we could do with subjects. When we moved
to Bassi we were careful to check each of the accounts for this
problem. Here however, it was not the password but the
permissions. A user could do anything – except submit a job.

That was fixed and we had our first session. One of the subjects
was involved with managing user interactions with the machine
and was having trouble submitting a job. We suspected the
previous problem with permission, but it was not the same error.
Instead it was an oversight—we had forgotten to ask for a portion
of the queue on Bassi to be set aside for our use. This in turn led
to another problem. One subject who wanted to do it all on Bassi,
using the laptop as a terminal, found he could not because the
queue was full. Other subjects, who were already doing
everything on the laptop, helped him with the appropriate compile
commands and configuration to run the parallel version on the
laptop. In the end we were able to resolve the queue issues and
two subjects completed and ran their parallel versions on Bassi.

6. DISCUSSION
What we have presented so far are the details and issues with
setting up and executing an empirical study of programmer
behavior in scientific computing practices. On the surface we
report on the common problems of studies: things will always take
longer and expect the unexpected. As many in this community do
not have direct experience setting up and executing these studies
we consider it valuable to pass on the details of our experiences.
There two meta level issues that merit further consideration.

6.1 A Retrospective Baseline?
What does it mean to establish a baseline that is retrospective?
Without a time machine we can at best partially duplicate the
circumstances and environments of a particular time. We were
lucky in that much of scientific computing still lives on the
command line with basic editors, making it easy to come close to
an effective environment. In an environment like NERSC a lot of
effort has been put into making sure that programming
environments are as consistent as possible across machines and

time, so we are reasonably assured that any impact from the
parallel environment has been minimized.

Nonetheless, as Shull et al [24] point out, hardware variations
matter in HPCS software development, as do the types of
developers, their process and the available resources. We have
tried to limit resources that seem essential today (such as Google)
and worked to minimize differences where we can. While we
strive for ecological validity there is only so far we can go.

6.2 Ecological vs. External validity
At the beginning of this paper we argued for pursuing ecological
validity rather than external validity. In part our motivation is
recognition that previous studies that focused on beginning
parallel students are not really indicative of the problems in actual
practice. The question is: are we sacrificing external validity for
ecological validity?

One answer is to some extent yes. Ecological validity puts greater
constraints on study design, setup and subject pools. These
constraints further reduce the overall numbers of available
subjects necessary to establish external validity. The contrast is
student subjects are more plentiful, but their behaviors and
expectations are different. Striving for the most realistic
programming situation is worth it because of the greater
verisimilitude of observed programmer practice to actual practice
in scientific computing.

7. CONCLUSION

8. ACKNOWLEDGEMENTS
Deep thanks to the others working with us on the PERCS project:
especially John Thomas, Rachel Bellamy, and Peter Malkin.
This work was supported by the Defense Advanced Research
Projects Agency under its Agreement No. HR0011-07-9-0002.

9. REFERENCES

[1] Albrecht, A. J. (1979) "Measuring application development

productivity," in Proc. Joint SHARE/GUIDE/ IBM Appl.
Development Symp. Oct. 1979, pp. 83-92

[2] Armour, P. (2004) Beware of Counting LOC.
Communications of the ACM. 47(3) pp 21-24

[3] Bader, D. A., Madduri, K., Gilbert, J. R., Shah, V., Kepner,
J., Meuse, T., and Krishnamurthy, A.
http://www.ctwatch.org/quarterly/articles/2006/11/designing-
scalable-synthetic-compact-applications-for-benchmarking-
high-productivity-computing-systems/. Retrieved February
21, 2008.

[4] Basili, V. http://www.cs.umd.edu/~basili/papers.html.
Retrieved Feb 27, 2008.

[5] J. C. Browne, T. Lee, and J. Werth, "Experimental
Evaluation of a Reusability-Oriented Parallel Programming
Environment," IEEE Transactions on Software Engineering,
16(2), 1990, pp. 111-120.

[6] CITI. Collaborative Institutional Training Initiative.
http://www.citiprogram.org/. Retrieved February 28,2008.

[7] Danis, C. (Nov, 2006). Forms of collaboration in high
performance computing: Exploring implications for learning.

Proceedings of the conference on Computer Supported
Cooperative Work, Banff, CA.

[8] Danis, C. and Halverson, C. (Feb, 2006). The Value Derived
from the Observational Component in an Integrated
Methodology for the Study of HPC Programmer
Productivity. In Proceedings of the Third Workshop on
Productivity and Performance in High-End Computing. Held
in conjunction with the Twelfth International Symposium
on High Performance Computer Architecture, Austin TX.
Pp 11-21.

[9] Ebcioglu, K, Sarkar, V., El-Ghazawi, T. and Urbanic, J.
(2006) An Experiment in Measuring the Productivity of
Three Parallel Programming. Languages. In Proceedings of
the Third Workshop on Productivity and Performance in
High-End Computing. Held in conjunction with the Twelfth
International Symposium on High Performance Computer
Architecture, Austin TX. Pp 30-36

[10] Eccles, R. and Stacey, D.A. (May, 2006) Understanding the
Parallel Programmer. In Proceedings of the 20th
International Symposium on High-Performance Computing
in an Advanced Collaborative Environment (HPCS’06).
IEEE: pp 2-12

[11] Hackystat (www.hackystat.org/hackyDevSite/home.do).
[12] Halverson, C. Unpublished Fieldnotes.
[13] Hochstein et al 2003

[14] Hochstein, L., Carver, J. Shull, F. Asgari, S., Basili, V.,
Hollingsworth, J. and Zelkowitz, M. (Nov., 2005). A case
study of novice parallel programmers. In Proceedings of the
2005 ACM/IEEE SC/05 Conference. IEEE, 2005.

[15] Hochstein, L., Basili, V., Zelkowitz, M., Hollingsworth, J.
and Carver. J. (September 2005) Combining self-reported
and automatic data to improve effort measurement. In
Proceedings of the Joint 10th European Software
Engineering Conference and 13th ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(ESEC/FSE 2005).

[16] Hofer, A. and Tichy, W.F. (2006) Status of Empirical
Research in Software Engineering.
http://wwwipd.ira.uka.de/~exp/otherwork/StatusEmpiricalRe
search2006.pdf

[17] Istanbul. http://live.gnome.org/Istanbul Retrieved February
28, 2008.

[18] LeBlanc, T., Scott, M., and Brown, C. (1988). Large-scale
parallel programming: experience with BBN butterfly
parallel processor. ACM SIGPlan Notices. 23(9) pp 161-172.

[19] Nystrom, N.A., Urbanic, J., and Savinell, C. Understanding
Productivity Through Non-intrusive Instrumentation and
Statistical Learning. P-PHEC 2005, San Francisco.

[20] Nystrom, N., Weisser, D. and Urbanic, J. (Feb, 2006) The
SUMS Methodology for Understanding Productivity:
Validation Through a Case Study Applying X10, UPC, and
MPI to SSCA#. In Proceedings of the Third Workshop on
Productivity and Performance in High-End Computing. Held
in conjunction with the Twelfth International Symposium
on High Performance Computer Architecture, Austin TX.
Pp 37-45

[21] Perry, D.E., Staudenmayer, N.A., Votta, L.G. (1994)
People, Organizations and Process Improvement. In
IEEE Software, July. Pp 36-45

[22] Perry, D.E., Staudenmayer, N.A., Votta, L.G. (1995)
Understanding and Improving Time Usage in Software
Development. In Process Centered Environments.
Fuggetta and Wolf, Eds. John Wiley and Sons Ltd.

[23] Schneiderman, B. and Carroll, J. (1988) Ecological studies of
professional programmers. Communications of the ACM.
31(11) ACM. Pp

[24] Shull, F, Carver, J., Hochstein, L. Basili, V. (2005) Empirical
study design in the area of High-Performance Computing.
4th International Symposium on Empirical Software
Engineering (ISESE '05). November 2005.

[25] Slogger: https://addons.mozilla.org/en-US/firefox/addon/143
Retrieved February 24, 2008.

[26] Sjoeberg, D., Hannay, J., Hansen, O., Kampenes, V.,
Karahasanovic, N., Liborg, K, and Rekdal, C. (2005). A
Survey of Controlled Experiments in Software Engineering.
IEEE Transactions on Software Engineering 31(9): 733-753.

[27] Snir, M. and Bader, D. (2004) A Framework for Measuring
Supercomputer Productivity. The Intl. Journal of High
Performance Computing Applications. 18 (4) pp 417-432

[28] TotalView. http://www.totalviewtech.com/index.htm.
Retrieved February 28, 2008

[29] VideoLAN. http://www.videolan.org/. Retrieved February
28, 2008.

[30] Zelkowitz, M, and Wallace, D. (1998) Experimental Models
for Validating Computer Technology. IEEE Computer 31(5),
(May, 1998) 23-31

