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ABSTRACT 
This paper presents the motivation, design rationale and 
implementation detail of a study of programmer behavior in 
scientific computing circa 2002. We discuss the constraints of 
creating a retrospective baseline—the methods used, the necessary 
conditions—and what we have learned. We examine the problems 
of doing such a study and the difficulties of ecological validity in 
a partly controlled setting.  

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – performance measures 

General Terms 
Empirical Studies, Measurement, Design, Human Factors.  

Keywords 
Empirical studies, metrics, measurement, productivity.  

1. INTRODUCTION  
Scientific computing, and its use of high performance computing 
systems (HPCS), covers a wide area. Variations include the range 
of problems being solved within a variety of organizational 
structures: academic, governmental and corporate. Within these 
organization types there is more variation in how HPC is 
supported. Program teams may be as small as one and as large as 
30 or more. Code construction itself ranges from single language 
to multi-language (including scripting languages) and in size from 
so-called Kleenex codes to large multi-module codes. Scientific 
computing has a lot of issues in common with traditional software 
(i.e. sequential code). As we shall see, it also has many that are 
specific to it. 

The motivation for this work comes from our participation in the 
DARPA sponsored High Productivity Computing Systems 
(HPCS) program. We are currently in Phase 3 of an eight-year 
effort aimed at developing peta-scale machines and supporting 
tools that significantly improve the productivity of the scientists, 
programmers, data managers and system administrators who will 

use them.  

Our focus here is on programmer productivity. Decades of work 
in software engineering have led to a number of theories and 
findings. These do not necessarily apply however, to scientific 
computing. As Shull et al [24] point out many of the underlying 
assumptions pertinent to traditional software development do not 
hold for scientific computing. Just one example is the importance 
of machine specifics in the programming and running of codes. 
Thus there are issues unique to understanding productive 
programmer behavior writing sequential code, and there is a 
whole new set of problems presented by the need for parallel 
coding.  

How to define productivity is itself not so simple. Is productivity 
measured in relation to an individual, a team or a specific project? 
What kinds of measures go into evaluating productivity? Is 
productivity related to work done by the programmer? Or is it the 
overall monetary gain from a particular project? While we are 
aware of these difficulties they are not our immediate concern. 
We are currently working with a modified economic model 
(utility equals work divided by cost). What is more important for 
us isn’t what measurements are chosen and how they are 
calibrated. Evaluating a change in productivity—for example 
increased productivity because of tool use—requires having an 
established baseline that can be compared against.  

For this project the baseline is defined to be 2002. Unfortunately 
no one measured or recorded parallel programming behavior at 
that time. To establish that baseline we need to capture 
programmer behavior using operating environments and tools that 
are representative of what various communities doing this sort of 
computing actually used at the time. For this reason we are 
working towards an ecologically valid study design. Ecological 
validity refers to how close the method, setting, and materials 
mimic the real world situation, that is real world in 2002. In 
addition, the data we collect must also be appropriate for 
comparing to similar tasks using new tools as they will be 
performed circa 2010.  
We shall map out here how a range of measurements and 
techniques can be brought together in an integrated methodology 
See Danis and Halverson [8] for a more detailed picture of 
programmer behavior. In what follows we present the design of an 
empirical study focused on baseline behavior in 2002. Our design 
is working towards ecological validity within the scope of what is 
possible and our deadlines. We discuss several data collection 
techniques to collect measures that we will use to provide a 
baseline of use against which new tool use can be evaluated. We 
begin with a brief summary of related work. Section three focuses 
on our empirical design and discusses the issues and trade-offs 
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leading to particular decisions. Section four presents a brief 
scenario of the study in action and issues are raised for discussion 
in section five. 

2. RELATED WORK 
Previous efforts to understand programmer behavior in general, 
including productivity, have encompassed three main 
methodologies: self-report via survey or interview, automated 
measurement of machine-human interaction during programming, 
and empirical studies – whether in the laboratory or in the field. 
(For example, see Perry et al. [21, 22] for more field based 
approaches; Hofer and Tichy [16] for a review of empirical 
approaches in the last decade; and Basili et al [4] for lab based 
empirical approaches.)  

Previous efforts to understand parallel programming behavior 
have used the same methodologies, but those efforts have been 
comparatively limited. [10]). A recent trend has been so called 
hybrid or integrative methods; that is studies that use several 
methodologies in order to triangulate on a more accurate 
understanding of behavior.  

2.1 Studies in Software Engineering 
There is a rich history of empirical studies of programmers and 
programming since the 1960s. These studies fall into a number of 
disciplines including psychology, computer science education, 
human factors, information technology, and software engineering 
(SE). Not surprisingly the domain of the researchers tends to 
focus the study on those aspects central to their field as it occurs 
during sequential programming practice.  

Software engineering has gradually adopted an empirical model of 
validation of new software concepts and tools, largely drawn from 
psychology experiment models. Zelkowitz and Wallace [30] show 
the increase in empirical validations in the literature from 1985 
1995. Sjoeberg et al [27] go further, focusing on the rise of 
controlled experiments in the literature from 1993-2003. 

Productivity in computing was often equated to work, a natural 
outcome of the recognition that application development was 
taking too long and requiring greater human resource costs than 
hardware costs. Thus metrics such as SLOC1 have been used as a 
measure of programmer work and therefore productivity. (More 
code does not necessarily equal more productive programming. 
See [2] for some problems with using LOC as a metric). Various 
measures related to completed lines of code have been suggested 
and discredited. Subjects ranged from students to professionals 
and studies used a wide range of methods from somewhat 
controlled experiments to in depth field observations of 
programmers. 

2.2 Studies in HPCS 
There have been studies in HPCS since the early 80’s. Some early 
studies centered on specific machines (e.g., LeBlanc et al [18]), 
while others focused on programming languages or parallel 
environments (see Browne et al [5]). With the DARPA HPCS 
program there have been a number of proposals redefining 
productivity in terms of an economic model (e.g. see Snir and 
Bader [26]. However, underlying all of these is programmer 

                                                                    
1 Source lines of code 

behavior and how to map that to metrics that can be used for 
evaluating productivity.  

The manner of data collection and the available subject pool have 
largely constrained the method and measurements. As most 
studies occurred in universities the available subjects were 
students, usually in their first parallel programming class (e.g. 
Hochstein et al, [14]). The programming task was generally one 
assigned to the class, such as Sharks and Fishes [15], and the class 
also dictated the programming language. Editors for coding and 
machines for running were determined respectively by personal 
preference and availability. Hochstein et al offers an analysis of 
data gathered from 4 graduate classes at different institutions 
programming classroom exercises. They point out the problems of 
trying to compare across different languages and machines, 
something that is not an issue in traditional software engineering. 

As in earlier studies on sequential programming, data collection is 
one of three types: manual, automated or hybrid, a combination of 
the two. Hochstein et al [15] combined automated data gathering 
using Hackystat [11] with manual data provided by programmer 
self report as a hybrid method. 

We have used a different combination for a hybrid – the 
integrated methodology [8]. This method combines automatic data 
collection (SUMS, [19, 20]) with concurrent manual observations. 
These observations are taken by a trained independent observer 
eliminating two of the problems noted with self-report data, 
namely the interruption-causing context switching by the 
programmer and the potential for conflict of interest in the content 
of the programmer’s self reports.  

2.3 Ecological Validity 
Methodological differences aside, one of the pervasive problems 
in empirical studies of programmers is how ecologically valid the 
study is. Ecological validity refers to how close the method, 
setting, and materials mimic the real world situation. Controlled 
experiments are by nature set up to limit the variance in what is 
being studied. This often means the circumstances of the study are 
so artificially controlled that they cannot be ecologically valid. 

The recognition of the necessity for ecological validity in 
programmer studies is not new. In a special section of CACM in 
1988 Schneiderman and Carroll [23] focused on the need for 
ecological studies of professional programmers in their native 
environments. The series of studies done by Perry et al picked up 
this call again in the mid 1990s [21, 22]. In both cases researchers 
were figuring out ways to study programmers in the wild resulting 
in qualitative and quantitative data. However studies like these are 
not always practicable.  

To illustrate the difficulties here are just a few examples of the 
variability and other issues that are related to our study. 
Individuals customize their environments, making evaluations 
between individuals difficult. In some cases our subjects may 
work on classified work at least part of the time and the 
organizational culture would have problems with us adding 
sensors that record programmer actions on their machine. Thus 
our goal for ecological validity must walk the line between what 
is realistic for the setting and what is realizable for the study. 

An additional issue related to this is the amount of data to capture 
and how to capture it. Unfortunately the ideal—collecting all 
pertinent data of programmer behavior and context in the real 
world over the life of a project—is extremely difficult as well as 



economically impossible. Our goal then is to develop a method 
that provides us with the best data to understand productivity as it 
pertains in the world of scientific computing in a realistic and cost 
efficient way. In the following section we present our approach 
using the integrated method and striving for ecological validity. 

3. OUR APPROACH 
The context of software development in scientific computing is 
not homogeneous. From previous research we know that scientific 
computing varies on several dimensions: organizational context, 
characterization of code developed, programmer resources, and 
code life. 

In our field observations and interviews, coupled with the 
literature, we find the following categories out of probably many 
more. 

1. Organizational context: Academic, Governmental, and 
Corporate. 

2. Code Type: New code, new feature in old code, code 
maintenance, code refactoring, code reuse. 

3. Problem characteristics: e.g. high data throughput, 
computationally intense 

4. Programmer resources: individual or team dedicated to 
code over a significant part of the code lifetime 

5. Code life: days, weeks, months, years, decades. 
  

The DARPA HPCS Productivity effort addressed some of this 
variability by developing a number of workflows that captured 
scenarios of development. The most straightforward workflow to 
address is that of a solo programmer writing code from scratch.  
Perhaps the most difficult is a large team developing, and 
maintaining a large multi-module code that has lasted over 
decades. Steps to ensure ecological validity must vary with the 
circumstances surrounding each of these scenarios.  

We opted to start focusing on an individual, programming a 
realistic problem that would be tractable in a reasonable amount 
of time (no more than 2 days) and using the environment and tools 
available in 2002.  In the sections that follow we delve into each 
of these areas.  

Building on our earlier work [7,8] we are again adopting an 
integrated methodology, but with some adjustments. In that study 
we learned that given a limited amount of resources (trained 
observers), it is better to observe a small number of subjects 
completely rather than sample across all subjects. Thus, since we 
cannot observe every subject in detail we have placed more 
emphasis on non-intrusive automated data collection than direct 
observation. However, a subset of subjects will also be observed 
and video taped as a point of validation for the method. 

3.1 Study Design & Tradeoffs 
Unlike many studies our focus is not on measuring time to 
solution. Rather it is to make sure that we see the usage detail 
necessary to understand how a particular tool affects programmer 
behavior and thus his or her productivity. Except in the case of 
language comparisons, how fast the code runs is mostly a factor of 
the machine and is not in this case pertinent. 

3.1.1 Overall design 
We have taken a ‘soup to nuts’ approach, covering a full 
development effort from conception of the problem solution, to 
coding, testing with provided data, and if time, tuning for better 

performance. The setup for studying a single programmer seems 
straightforward: one individual, one problem, one personal 
computer (PC) and one supercomputer (SC). This simplicity 
however obscures the many decisions and trade offs along the 
way.   

3.1.2 Problem 
The ideal problem would be one that needs to be solved in real 
life. However, there are a number of issues with using that kind of 
problem. For example, some are very domain specific, requiring 
deep domain knowledge to even understand the problem. In some 
cases the solutions may be proprietary, or need to be protected in 
some way, so it is difficult to get permission to collect detailed 
data during a regular work process. Nonetheless, the problem 
must be sufficiently realistic for comparison to actual practice. In 
addition, what we are most interested in are those aspects of 
programming that may be helped or hindered with tools. Thus the 
difficult aspect of solving the problem, something that could take 
weeks or more, is something that we want to minimize. Finally, 
time limitations require a problem that is tractable but not trivial. 

Our solution was to use one of the problems developed for the 
HPCS program called a Synthetic Scalable Compact Application 
(SSCA). (For details see Bader et al. [3]). SSCA1 presents a 
problem of pattern matching, the Smith-Waterman algorithm 
using for example gene sequences. While some domain 
background in the problem description grounds it in genetics, the 
problem does not require deep domain knowledge to solve. We 
provide them with working serial code and ask them to parallelize 
a portion. Making it parallel can be done in two ways: a more 
difficult wave-front algorithm or a straightforward embarrassingly 
parallel solution Unlike SSCA2, SSCA1 can be solved cleanly 
using MPI, the dominant means in 2002, in exactly the way it was 
designed to be used.  

3.1.3 Machine Issues 
Our objective in this study is to establish a reasonable baseline of 
programmer behavior circa 2002 by studying programmers doing 
a common parallel programming exercise using the kind of 
machine and programmer tools then available. This means we 
need to use the appropriate operating environments, tools and 
languages. 

We were fortunate to begin our study design on a machine that 
was close to 2002 capabilities. The National Energy Research 
Scientific Computing (NERSC) center’s IBM SP RS/6000 
Power3—Seaborg—was brought online in 2001 and still had the 
software and tools that fit our needs. As we cannot turn the clock 
back to 2002 we believe that setting up a study of programmer 
behavior under these conditions is the most reliable way to 
establish a realistic baseline for future comparisons. 

Our pilot subject used Seaborg until it was decommissioned in 
January 2008. We switched our setup to Bassi—an IBM p575 
Power5 system. While the computational capabilities—from chip 
design to machine architecture—are somewhat different, in all the 
ways that mattered for this study they were the same. That is to 
say that we were able to provide the same software stack 
(operating system, editors, mpi library and compile commands) as 
we had on Seaborg. Our study subjects all used Bassi, removing 
the problem of comparing across machines. 



3.1.4 Laptop Issues 
Previous field research and interviews indicated that many 
programmers program directly on the interactive portion of a 
machine’s nodes. However we have seen those who develop code 
on a local machine and then upload and run the code on a 
supercomputer [12]. For the purposes of the study laptops are just 
as powerful as a desktop and much easier to move around. In 
addition, by dedicated laptops we are able to install a base 
configuration that can subsequently be used by the new 
programmer tools necessary for the 2010 comparison.  

We set up five identical ThinkPad T61p laptops for this study. 
The base configuration required on the laptop was constrained by 
three factors:  

• the requirements of the automated data collection 
software (Hackystat);  

• what tools were available in 2002 and; 

• the base requirements of the tools being developed. 

Table 1 shows a summary of the operating environment and tools 
used to configure both the laptops and Bassi for the study. 

Table 1. 

 Laptop Bassi 
OS Fedora Core 6 Linux IBM POE, AIX 
Editors Vim, emacs Vim, emacs 
Shell Bash Bash 
Languages Fortran 77 & 90, C Fortran 77 & 90, C 
Message 
Passing 

MPI MPI 

Web 
Browser 

Firefox. Limited to 
NERSC and MPI 
sources 

none 

Automated 
Data 
Collection 

Hackystat 
Slogger 
Istanbul 

Hackystat 

3.1.5 Subjects 
The range of contexts where parallel programming happens 
argues for a range of subjects. We know that some organizations 
have dedicated interdisciplinary teams with experienced 
programmers, while others are constantly bringing in college 
graduates with little parallel experience and seeing a large attrition 
rate [12]. To address this we chose to focus on two levels of 
experience. Experienced subjects are defined as having 10 or 
more years of experience in parallel programming, while novices 
were considered to have had at least one parallel programming 
class and 3 years of experience programming. In this way we hope 
to avoid the problem of separating out effects caused by just 
learning parallel programming. 

Finding subjects with these levels of experience, who have the 
free time for such a study, is not trivial.  We had no expectation 
that we could recruit enough subjects in order to demonstrate 
statistical validity and generalizability. Instead our focus is a 
detailed analysis of a relatively small number of subjects resulting 
in quantitative and qualitative results.  

We proposed to recruit 10 subjects in each of the experience 
conditions. Allowing for dropouts we hope to have a minimum of 
8 in each. Why so small a number? In addition to the overall 
programming experience, all subjects needed to be well versed in 

the tools and languages circa 2002. There are other questions we 
would like to explore; such as whether being trained in a science 
rather than computer science leads to different programming 
behaviors or productivity measures. However, having already 
narrowed the pool of possible subjects by imposing the 
requirements for ecological validity we felt that any additional 
requirements would make the pool too small to recruit from 
successfully. 

3.1.6 Data Collection and Recording 
In previous efforts we worked with the Pittsburgh 
Supercomputing Center in a comparative language evaluation 
[8,9]. In that study we used an integrative methodology gathering 
data in three ways: automatically collected computer interaction 
data via the PSC SUMS application [19, 20], detailed behavioral 
data noted by trained observers, and, in some cases, video taped 
data.  SUMS collected extensive data, including recording the 
command line interface (CLI) and application feedback displayed 
on the screen, web browser activity, and a snapshot of the code 
every 10 minutes. This provided us with almost more data than we 
could use. PSC used machine learning techniques on the 
automatically collected data in order evaluate it. Our observations 
were used to fill in gaps where no automated data was collected 
and to infer programmer intent in some cases.  
We have since moved to using the Hackystat7 framework for 
automated data collection. Hackystat [11] is an open source 
framework for automated collection and analysis of software 
engineering process and production metrics. Hackystat users 
attach software "sensors" to their development tools, which 
unobtrusively collect and send raw data about development to a 
Hackystat web server for display and analysis. 

Hackystat is designed to be extensible and configurable along 
three primary dimensions: (1) the set of "sensors" (i.e. plug-ins to 
development tools that gather process and product data); (2) the 
set of "sensor data types" (i.e. structures that represent raw sensor 
data of various types); and (3) the set of "applications" (i.e. server 
side analyses that provide useful summaries of developer behavior 
over time).  

To provide this flexibility, Hackystat has an architecture 
consisting of over 60 public modules that are organized into four 
subsystems. The Core subsystem includes modules that provide 
basic framework mechanisms. Modules in the Sdt subsystem 
implement sensor data types. Modules in the Sensor subsystem 
implement sensors for development tools. Finally, modules in the 
App subsystem provide applications that generate useful analyses 
over the sensor data collected by the sensors. As it was originally 
designed for software developer to collect data on themselves the 
sensors tend to focus on current tools and systems. This makes 
using Hackystat attractive for instrument our 2010 tools, but 
unfortunately means that we cannot take advantage of the full 
wealth of sensors. 

In our case, we attach the sensors to the development tools in each 
laptop in advance and configure the laptop to automatically push 
the data out to the server at the end of the programming session. 
Like SUMS we can collect data from both the command line and 
the editors. Unlike SUMS we do not capture the compiler 
responses, nor do we have code snapshots over time or web 
browser history. We use another piece of software—Slogger 
[25]—to record web browser activity. This data is integrated with 
the Hackystat data after the study is complete. 



As we noted above, detailed observations as we did in our 
previous study are extremely time-consuming. We wanted to 
move to something that would be less person intensive. Video 
data, while easy to record, requires fairly obtrusive equipment. 
Our solution is to move to screen capture software to supplement 
the Hackystat and Slogger data.  While this data, like video, 
requires time to analyze it does have the benefit of being 
unobtrusive and automatic. 

We use an open source project called Istanbul [16] for screen 
capture. This does require a few additional steps to make sure it is 
recording on each laptop, so it is not as unobtrusive or automatic 
as Hackystat. It produces a file that uses the open source video 
codec Ogg Theora. It can be viewed with both its own application 
and VideoLAN [29] an open source player that handles Ogg 
Theora. 

3.1.7 Validation 
Validation of this method is necessary along two dimensions. First 
the study design and its details must be validated through a pilot 
study. Separate from this is the validation of the various data 
collection methods used. That is, are we getting the coverage of 
data we need and is it sufficiently detailed and complete? This 
was particularly important, as this was our first use of Hackystat. 

We designed our pilot study to collect multiple sources of data 
that could then be compared against each other. In this way we are 
able to verify the accuracy and sensitivity of the data collected by 
Hackystat as well as where there are gaps that need to be 
addressed by another method. 

3.2 Execution 
3.2.1 Recruiting and qualifying subjects 
We are lucky that our association with NERSC, and the proximity 
of Lawrence Berkeley National Laboratory (LBNL) and 
University of California, Berkeley (UCB) provide an appropriate 
pool of subjects. The scientific computing world is compact and 
overlapping within these three organizations. Our strategy was to 
have a recruitment email sent out by the Associate Director of 
NERSC targeting NERSC, the Computer Research Dept. (CRD) 
at LBNL and the various outreach efforts into the larger 
community. In addition we targeted several of the professors of 
graduate level parallel classes at UCB.  

Once subjects express an interest based on the rough 
qualifications outlined in the recruitment email we send them an 
additional survey to gather information about their experience 
working in parallel programming, including classes, projects for 
fun and paid work. If subjects qualified they were then scheduled 
for a two-day session at an IBM office in San Francisco, CA. 

3.2.2 Machine setup 
The computational environment necessary for scientific 
computing varies in both hardware and software. Having 
determined the closest hardware (Seaborg) we had to do two 
things. First we needed to evaluate what was currently on Seaborg 
and how it compared to what was available in 2002. In most cases 
this was a question of the software level available. While we 
could not take software back to an earlier level we were able to 
assure ourselves that the existing versions varied by an acceptable 
amount. In addition we investigated which software predominated 
in use. For example, TotalView [28] was the most commonly used 
debugger, with some use of both dbx and gdb reported in the 

annual user surveys. However, the exact usage was not tracked. In 
contrast library use was tracked.  

In addition, some software updates needed to be made to Seaborg 
in order to use Hackystat to directly collect data from interactions 
on the machine. These included the version of a Java compiler 
necessary for Hackystat to run, as well as ensuring the levels of 
Vim and bash were the ones supported by Hackystat. (When we 
transitioned to Bassi we needed to duplicate these efforts.) 

On both the laptop and Bassi we provide a directory that includes 
a serial coding of the problem and a range of data sets it can be 
run against. That code is capable of being compiled and run on 
both machines. We duplicate this in another directory where we 
ask them to work on their mpi code. We also provide a make file 
and documentation about the problem. Each subject has a 
dedicated account on Bassi that corresponds to their laptop name 
for easy identification. 

3.2.3 Task issues 
The task or problem needed to be stated in a way that would be 
sufficiently clear without giving away the answer. We had used 
the same problem in our previous study, however in that case a 
domain expert at PSC presented the problem. He was also 
available to answer questions for an additional half hour. In 
addition the study schedule provided a considerable amount of 
time for subjects to think about the problem, including an hour or 
so after the afternoon presentation, and overnight before 
beginning coding the next morning.  

In contrast we needed to present the problem in such a way as to 
reduce the time necessary to understand the problem and its 
potential solution. Needing to maximize the time available for 
coding the problem motivated us to make it as straightforward as 
possible. 

3.2.4 Pilot 
We did a pilot study in order to work out the details of the study 
setup and to verify that we were collecting the appropriate data. 
Our pilot subject was a NERSC retiree with many years of 
experience in the HPC world.  During the pilot we worked out 
details of the interaction between machine configurations. We 
were also able to refine the problem presentation significantly 
based on his feedback. As he coded and parallelized the Smith-
Waterman algorithm we recorded data with Hackystat and 
Slogger, observable programmer behaviors were noted by a 
trained observer, and recorded the complete session on videotape.  
Data analysis is now underway to detail where our measurements 
are sufficient and where we need to look for additional data.  

4. Study Scenario: An Example 
Once subjects are screened and scheduled, then the study can 
begin. In this section we briefly outline the various stages and 
progress of the study. 

4.1 Main study 
For each session a setup process occurs to make sure all the 
instrumentation is properly set up to record data. We can 
accommodate up to 5 subjects at one time, although in practice it 
is usually less. Once the subjects arrive and get settled in we cover 
informed consent before beginning the main study. First we make 
sure that everyone understands that the study is about patterns of 
behavior rather than their skill at solving the problem. We 
introduce them to the setup on both the laptop and Bassi—such as 



where files are located—and then let them begin reading the 
problem. Should there be any questions regarding the problem 
statement itself we have the author available to answer questions.  

The subjects begin working on the problem whenever they feel 
ready. We provide them with a serial version of the code written 
in C (on the laptop and as a printout). They have pad and paper as 
well as a cheat sheet that summarizes the login commands for 
Bassi and the run commands for the serial version of the code. 
Almost all of their computer interactions are captured: command 
line interface (CLI), editor, and web use. What is not captured is 
their time not involved with the computer. In this case, where we 
are largely looking at patterns of behavior interacting with tools 
and in various coding phases, the lack of the other time is 
acceptable.  All subjects also have their screen recorded. For 
additional validation one subject in each session is also video 
recorded. 

With multiple subjects in the same session we also get audible 
interactions that are captured on videotape. Subjects are cautioned 
not to confer about the problem but are able to share information 
about working on the laptop or Bassi environment.  

Most subjects spend an hour or so reading the problem, and 
reviewing the existing code. Some may take notes, or draw 
diagrams related to the solution. As some programmers think 
better on their feet we allow them to get up and walk around the 
building to think. An observer records the times they leave and 
enter the session room. (This is possible because we have so far 
run the study on weekends and the floor has been empty and 
isolated.)  

Everyone takes a break for lunch (about 45 minutes) and then 
returns to the task. Some finish within a day while others return 
for a second day. At the end, after collecting some additional 
information and taking a post session survey the subjects may 
leave. Rather than have them fill out the post session survey there 
most subjects opt to have it emailed. They fill out the document 
and email it back. 

5. LESSONS LEARNED  
So far we have recruited four subjects, three of which have 
completed the study. (The fourth is being scheduled). It is too 
early to present results, as data analysis has just started and is 
ongoing. However there are a number of things we have learned 
from our experience. 

5.1 It Always Takes Longer 
Most academics, and even corporate researchers, are familiar with 
gaining the approval of their home institutional review board 
(IRB) for a study using humans. In this case however, several 
things complicated the process. As corporate researchers we do 
not have the same requirements for CITI [6] certification required 
by many academic institution. Getting our team certified added 
extra time to the process. In addition we needed to pass two levels 
of review: LBNL and their parent UCB. While this was not 
difficult it was extremely time consuming taking about six 
months. 

Switching machines added another big chunk of time. Even 
though Bassi was mostly up to date in the versions of compilers 
and applications, we still needed to verify each one. 

5.2 Recruitment and Experience 
Subject recruiting was harder than we expected. In our previous 
study we had found that DARPA HPCS participants were 
unwilling to dedicate their personnel’s time for a full week. In this 
case there were two differences. First, we had reduced the scope 
of the study to two days for coding the problem. Second, we had 
buy-in from NERSC management who agreed to let individuals 
choose to do the study on work time, or they could do it on their 
own time and get paid. For graduate students we thought that 
offering to pay for two days, even if they finished in one, would 
be added enticement.  Neither of these worked exactly as 
expected.  

• We required subjects to travel to a nearby location that 
was easily accessible to public transportation. However, 
some expressed that this was too much to bother with.  

• When we received IRB approval it was the holiday 
season (between Thanksgiving and Christmas) before 
we were able to recruit subjects. Not surprisingly many 
potential subjects had plans. 

• Students had some difficulty scheduling two days in a 
row due to classes or meetings. 

One issue we didn’t expect was related to experience. We did not 
realize that experienced programmers might not be programming 
regularly as part of their job. In particular several subjects were in 
management and expressed how their skills were rusty, requiring 
them to take time looking up MPI calls and other details. On the 
other side, many of the comparative novices had lots of 
experience, but not necessarily with MPI—further reducing the 
available subject pool. 

Finally, also related to experience, we were surprised that the 
“obvious” solution to the subjects was the harder wave front 
approach. In retrospect this makes sense, as the scientific 
programmer’s job is to make sure that their code handles all the 
edge conditions that could occur in the phenomena they are 
modeling. It was an awkward situation to remind subjects that, as 
one participant put it: “Things don’t have to be perfect. It’s ok if 
the monkey dies.” 

5.3 Old Habits are Hard to Break 
Vi was the first visual editor for UNIX. It debuted in 1976 and is 
still in use, although almost no one uses a true vi anymore, except 
perhaps in scientific computing. This is not because they are all 
using emacs. It’s because a number of offshoots have been created 
that will work on operating systems other than UNIX. The most 
popular of these is Vim, covering many laptop operating systems 
as well as VMS.  Hackystat’s sensors only work with Vim, not 
with vi. Telling subjects to use Vim, and even reminding them, is 
not enough to overcome ingrained habits. Our solution is simple: 
alias vi to call Vim.  

5.4 A Matter of Control? 
As we mentioned earlier, we provided a working make file to 
compile the program.  Generally make files are perceived to help 
the programmer by capturing all the routinely repeated, and often 
arcane, actions necessary to build a program. We justified this 
decision based on our experience that each supercomputer center 
has very detailed and explicit profiles that need to go into make 
files, leading at a minimum to providing templates.  

Counter to our expectations almost no one used the make file. The 
majority ran things manually from the command line. We 



hypothesize that this may be due to their perception that this is 
(comparatively) a toy problem. In that case we must ask ourselves 
how we might capture the various issues that may only be 
exposed in a more complicated example.   

5.5 Accounts and Bassi, and Laptops! Oh My!  
Resolving differences between machines raised some surprisingly 
frustrating problems. We were lucky that all of our subjects had 
already used Bassi, so they were familiar with it. In our pilot we 
had trouble finding the right terminal type to interact with Seaborg 
from the laptops. Several we tried produced extra characters on 
one machine or the other. Luckily we discovered the right 
terminal type and subsequently how to set the terminal type in 
order to get syntax highlighting in Vim. All of this translated to 
Bassi. However, Vim on the laptop continued to produce artifacts 
in the code that sporadically appeared after uploading to Bassi. 
We may never figure this out, but the participants still need to 
manually correct them.  

Issues that experienced programmers in this world take for 
granted are things that we as researchers might not consider. Take 
for example login accounts. With our pilot subject, the retiree, 
they reactivated his prior account and had him change his 
password. When he went to log in however the password did not 
work. It seems the password change had not propagated around all 
the nodes. He got around this by logging in on an administrative 
node, not something we could do with subjects. When we moved 
to Bassi we were careful to check each of the accounts for this 
problem. Here however, it was not the password but the 
permissions. A user could do anything – except submit a job.  

That was fixed and we had our first session. One of the subjects 
was involved with managing user interactions with the machine 
and was having trouble submitting a job. We suspected the 
previous problem with permission, but it was not the same error. 
Instead it was an oversight—we had forgotten to ask for a portion 
of the queue on Bassi to be set aside for our use. This in turn led 
to another problem. One subject who wanted to do it all on Bassi, 
using the laptop as a terminal, found he could not because the 
queue was full. Other subjects, who were already doing 
everything on the laptop, helped him with the appropriate compile 
commands and configuration to run the parallel version on the 
laptop. In the end we were able to resolve the queue issues and 
two subjects completed and ran their parallel versions on Bassi. 

6. DISCUSSION  
What we have presented so far are the details and issues with 
setting up and executing an empirical study of programmer 
behavior in scientific computing practices. On the surface we 
report on the common problems of studies: things will always take 
longer and expect the unexpected. As many in this community do 
not have direct experience setting up and executing these studies 
we consider it valuable to pass on the details of our experiences. 
There two meta level issues that merit further consideration. 

6.1 A Retrospective Baseline? 
What does it mean to establish a baseline that is retrospective? 
Without a time machine we can at best partially duplicate the 
circumstances and environments of a particular time. We were 
lucky in that much of scientific computing still lives on the 
command line with basic editors, making it easy to come close to 
an effective environment. In an environment like NERSC a lot of 
effort has been put into making sure that programming 
environments are as consistent as possible across machines and 

time, so we are reasonably assured that any impact from the 
parallel environment has been minimized.  

Nonetheless, as Shull et al [24] point out, hardware variations 
matter in HPCS software development, as do the types of 
developers, their process and the available resources. We have 
tried to limit resources that seem essential today (such as Google) 
and worked to minimize differences where we can. While we 
strive for ecological validity there is only so far we can go. 

6.2 Ecological vs. External validity 
At the beginning of this paper we argued for pursuing ecological 
validity rather than external validity. In part our motivation is 
recognition that previous studies that focused on beginning 
parallel students are not really indicative of the problems in actual 
practice.  The question is: are we sacrificing external validity for 
ecological validity?  

One answer is to some extent yes. Ecological validity puts greater 
constraints on study design, setup and subject pools. These 
constraints further reduce the overall numbers of available 
subjects necessary to establish external validity.  The contrast is 
student subjects are more plentiful, but their behaviors and 
expectations are different. Striving for the most realistic 
programming situation is worth it because of the greater 
verisimilitude of observed programmer practice to actual practice 
in scientific computing. 

7. CONCLUSION 
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