
Informing Design of a Search Tool for Bioinformatics

ABSTRACT
We conducted an exploratory survey of software developers
involved in creating, testing and maintaining bioinformatics
software. In this paper we discuss how our study led us to
conceptualize a tool that would index bioinformatics source code
on the Web and create a searchable code repository. Such a tool
would promote code reuse, facilitate software development for
end-user programmers in bioinformatics, and eventually enhance
the quality of commonly accessed source code. We propose the
technique of contextual inquiry through interviews for detailed
tool design and development. During the survey and surrounding
investigation, we observed that domain-specific communities of
practice provide useful domain knowledge that can facilitate tool
design and development. This study is an example of how
empirical studies can inform the design of tools and techniques to
support scientific software development.

1. INTRODUCTION
As the ubiquity of software increases, software functionality is
becoming more specific to the domain in which it will be used.
Although there will always be a significant role for general-
purpose software (e.g. general spreadsheet applications, word
processors, operating systems), the segment of the software
market devoted to domain-specific software is growing.

Developers and users in such domains as bioinformatics, space
exploration, and mathematical modeling have evolved into
communities of practice with their own domain-specific
approaches to and philosophies about software development. The
domain knowledge needed to effectively produce scientific
software eclipses the computing knowledge needed in these
domains. Hence scientific software professionals are expected to
have a very diverse knowledge base spanning specific scientific
disciplines, data visualization, database design and management
and technology, among others. Also, several domains such as
bioinformatics, present an exemplary usage of the open source
philosophy for collaborative research and software development.
This combination of extreme domain-specificity, the unique
background of many developers, and the extensive collaboration
and formation of communities of practice make scientific software
development a lens into the future of software development in
general. This paper is a part of our ongoing work in the field of
bioinformatics.
In an effort to better understand, and thus to study, the
bioinformatics software development community, we conducted a
survey of bioinformatics developers, asking questions about their
background, the tools and techniques they employ, and their
perceptions of quality and maintainability among other things.

The intent of the survey was to describe bioinformatics software
development, in order to provide software engineering researchers
with the necessary background information, to address relevant
and important problems in this domain.
From the survey we learned that almost half of bioinformatics
professionals are end-user programmers while the other half are
professional programmers. Many survey respondents stated that
the reliability, maintainability and overall quality of software were
unsatisfactory. We learned that open source involvement was a
major part of bioinformatics software development. Several
different tools were used for defect tracking and configuration
management. There was no unified process for developing and
maintaining applications that were actually very similar to each
other.
Based on our study of this domain through the survey and
surrounding artifacts, we concluded that a tool that would support
search and reuse of bioinformatics software would be a good
contribution to this community. This tool would not only search
for bioinformatics software components but also for information
contained in bug reports, defect databases and CVS/SVN
repositories. The design of this tool was informed not only by our
survey findings but also by existing tools, ubiquity of
bioinformatics open source software and communities of practice.
Empirical studies are important in the process of learning and
characterizing phenomena such as domain-specific software
development. In this paper we propose contextual inquiry as a
technique for specifying tool features so that they would be based
on actual user input and areas where users need support. This
study is an example of how empirical studies can guide creation
of tools to support scientific software development.
In the following section we discuss some of the problems facing
bioinformatics software development. Section 3 highlights some
of the findings from our survey. Section 4 discusses current trends
and the design of a search tool. Section 5 is conclusions and
implications.

2. CHALLENGES IN BIOINFORMATICS
SOFTWARE DEVELOPMENT
Prior literature on this topic points to some specific challenges
facing the bioinformatics domain.
Redundancy: Reuse of software and programs was emphasized
by Lincoln Stein, a proponent of open source in bioinformatics
and a thought leader in this domain [1]. Stein compared
bioinformatics with Italy in the Middle Ages i.e., a land of city
states, with each state having its own government, its own
currency and its own problems. Similarly, in bioinformatics,
different scientists may be working on different (or similar)

Medha Umarji
Dept. of Information Systems

University of Maryland Baltimore County
Baltimore, MD, USA
+1 (410) 455 3956

medha1@umbc.edu

Carolyn Seaman
Dept. of Information Systems

University of Maryland Baltimore County
Baltimore, MD, USA
+1 (410) 455 3937

cseaman@umbc.edu

aspects of the same problem. Stein urged bioinformatics
researchers to join open source communities, share their programs
and data, so that as a result of these collaborations, complex
problems can be broken down and solved more easily.
 End-users: There is a wide range of people who use and produce
bioinformatics software, from purely research-oriented biologists
with no programming background, to professional programmers
with no domain knowledge[2, 3]. Many scientific software
developers have backgrounds in areas other than technology or
computing, but they do produce effective software [4]. Thus,
studying the strategies employed by these software developers
will inform future tools and best practices to support domain-
specific software developers in other areas. In a recent study,
Barker and Thornton [5] stated that software engineers
(professional programmers) should be involved in development
of bioinformatics software, and mature development practices
should be adopted due to the significant complexity of the tasks
involved. Wang et al. made similar observations and added that
there was a need for effective development of preferably web-
based tools [6].
Quality assurance practices: Software failures can be costly, and
therefore effective quality assurance activities should be adopted
in bioinformatics projects. Heusden suggested that the open
source development model used for many bioinformatics products
can have weaknesses in terms of quality assurance [7]. He stated
that relying on Raymond’s famous phrase, “given enough
eyeballs, all bugs are shallow”[8], for open source projects is not
enough because it is often the case that only some portions of
bioinformatics source code are reviewed frequently. A
contributing factor that exacerbates this problem is insufficient
support for the reuse process [9].

3. SURVEY OF BIOINFORMATICS
DEVELOPERS
We conducted an online survey of bioinformatics and biomedical
professionals subscribed to OSS project mailing lists listed at the
open-bio foundation. The survey addressed characteristics of the
population and the domain, such as academic background,
involvement in open source, and perceptions of product quality.
After blank responses were deleted, we had a valid sample of 126
respondents. The response rate was 27.9%.
The results of the survey showed that close to half of the software
developers in this domain have degrees in computer science
(50%) and related disciplines while close to 40% of respondents
were from a Biology-related discipline. Therefore, we conclude
that this domain has quite a few professional programmers who do
not have adequate domain knowledge and a sizable proportion of
users not formally trained in computer science. Forty-seven
percent of the respondents reported having worked on open source
projects, 21.6% reported working on private lab-based software or
proprietary software, and 31.2% did not divulge names of their
projects. Thus open source involvement is prevalent in this
domain.
Practices such as extreme programming and prototyping are
frequently used, especially for developers who work on larger
projects. Unix-based platforms such as Linux are the main
programming platforms. Bioinformatics developers perceive the
quality of their software to be high in general, but there is room
for improvement, particularly in the testing and maintenance
processes. Configuration management tools were very popular
(70% of respondents used them) but defect tracking tools were not

used as often (15% reported using Bugzilla). Documentation and
comments were mentioned very often as techniques for enhancing
maintainability.
From the survey we learned that there is a high proportion of end-
users as well as professional programmers in this domain,
therefore any tool should cater to the demands of both these
communities. We also learned that the current reliability, quality
and maintainability of bioinformatics software is not satisfactory,
and this software is not tested adequately. However, there is
potentially a lot of information (meta-data) in CVS/SVN
repositories about the source code, embedded in comments and
documentation.

4. DESIGN OF A SEARCH TOOL
Given the ubiquity of open source in the bioinformatics domain,
and the findings from our survey one solution that would tackle
the increasing redundancy, help end-users to develop better
software and enhance quality, is to create and promote an
effective mechanism for indexing bioinformatics open source
code available in different repositories on the Web, and use
algorithms specifically designed for internet-scale source code
searching to find and retrieve code snippets, components and
applications.
The suggestion for such a search tool comes from current trends
in source code search and reuse on the Internet[10]. In the next
section we discuss the presence of massive repositories of source
code, and search engines that index and retrieve software
components from these repositories. The difference between the
existing search mechanisms and our proposed search engine is
incorporating search by domain-specific parameters such as
vocabularies of research terms, current research problems and
social networks and collaborations. Therefore in Section 4.2 we
discuss learning about the domain from communities of practice
and other social networks.

4.1 Source code on the Internet
There is a massive amount of open source code available on the
Web and it comes from open source projects, websites that
support communities of practice, and language-specific archives.
Among these are Koders.com with over 226 million lines of code
(MLOC), Krugle.com with over 2 billion lines of code (TLOC),
csourcesearch.net over 283 MLOC, and Google Code Search with
over 1TLOC. These are repositories of source code for all types of
software that may or may not include scientific, domain-specific
software. In the recent past search engines that index and retrieve
source code (such as Google Code Search) have been created, to
take advantage of the availability of open source code
repositories.

An increasing proportion of this open source software is domain-
specific. For example, bioinformatics open source project sites
like BioJava (http://biojava.org) and BioPerl
(http://www.bioperl.org/) contain huge compilations of source
code. Additionally, some open publishing portals like
BioMedCentral (http://www.biomedcentral.com/) make software
corresponding to publications available to all members.
BioWareDB [11], a hyperlinked database of freely available and
commercial bioinformatics and biocomputing software, had
grown to 2800 validated entries by 2003. There is also a large
number of bioinformatics projects hosted at project hosting
websites, SourceForge.net, and FreshMeat.net.

As discussed briefly in Section 2, bioinformatics code is not
contained in a single repository but is dispersed in different
repositories all over the Web, and there is no search mechanism
for identifying and locating relevant bioinformatics software
objects when needed. The only known search solution is a code
search engine called b-src (http://b-src.cbrc.jp), which is based
on gonzui, a Japanese code search engine
(http://gonzui.sourceforge.net/). However, b-src does not have the
features to support a scalable implementation across all
bioinformatics communities.

4.2 Learning Domain Characteristics
Learning about the domain is an important requirement prior to
designing any tool. Domain-specific terminology, prominent
research problems and the overall nature of a domain can be
discerned from passive observations on mailing lists and
communities of practice.
A community of practice is formed by a group of people united by
a joint enterprise, who develop mutually beneficial social
relationships in the process of working towards things that matter
to them [12]. Artifacts, advice/tips and other relevant knowledge
are contributed by members to provide a shared repertoire of
resources for the community.
One example of such a community is the Open Bioinformatics
Foundation (http://www.open-bio.org/). This community is
formed by people who have been active in open source
bioinformatics projects such as BioPerl and BioJava that provide
frameworks for developing bioinformatics applications. This
portal also links to artifacts such as wikis for definitions and terms
used in bioinformatics, as well as news on recent developments
such as licensing agreements.
Mailing lists and discussion forums also help to identify factors
such as academic vs. research focus and commercial vs.
government focus. We did some non-participant observation on
these mailing lists and communities of practice, to better
understand the needs and work practices of bioinformatics
professionals.

4.3 Designing a Search Tool
In this section we outline the motivation for a search tool, possible
features it would have, and propose a technique for further
refinement and implementation of these features.
Motivation: This tool is based on the concept of pragmatic reuse,
i.e., the reuse of source code components that were not designed
to be easily reused [13]. Typically software components lack the
meta-data and searchable keywords necessary for reuse. With the
advent of open source the concept of code reuse has been
revolutionized, it is now the norm rather than the exception. From
our observation, the assimilation of pragmatic reuse has been slow
in bioinformatics and other related communities because the
software developed in these communities is difficult to find and
not enough information is typically provided to facilitate reuse.
Therefore there is a pressing need to index all the bioinformatics
source code, and to create a searchable repository with relevant
research information and meta-data about the code.
Such a tool would make it easy for an end-user programmer to
identify and locate desired software components, thus avoiding
the rework effort, and allowing him/her to focus on the research-
related problem.

Features: The search engine could be tailored to index software
that contains terms specific to bioinformatics and biology-related
disciplines. These terms could be learned from online
vocabularies or dictionaries. The indexing process can start by
including common bioinformatics programming frameworks such
as BioPython, BioJava and BioPerl.
The research laboratory from which the software application
originated could be recorded as an indexing factor. Authors of a
code snippet could be used in the indexing mechanism as well, so
that users could retrieve code written by a specific programmer.
Based on the code structure it might be possible to distinguish
between academic and industrial open source projects.
Once an indexed repository is created, the search could be
performed on meta-data such as author name, research problem
and name of affiliated lab or company (if such information was
available). Ideally, the repository could be classified into subjects
such as genomics, proteomics etc.
If annotation capabilities and “tags” were built-in, such as in
del.icio.us, we would be able to provide recommendations to users
and relevant information about each code component. Typically, a
keyword-based search could retrieve programs as well as artifacts
surrounding source code, such as documentation. Search could
also be performed based on the code structure – such as use of
APIs and other dependencies.
Either this tool could be a stand-alone implementation based on
algorithms specific to code search, or it could be designed as a
plug-in to generic code search engines such as Google Code
Search (http://www.google.com/codesearch).
There are several ways in which domain knowledge could be used
to facilitate search. For example, the tool could have features that
support social network analysis of communities of practice, and
convert that information into a social dependency graph. Such a
graph coupled with source code analysis would then enable
researchers to learn about phenomena such as collaborative
distributed scientific software development [14].
Specification and Evaluation: The next step would be to present
this conceptual solution to bioinformatics professionals, and to get
their opinion about the utility and feasibility of creating and
deploying this tool.
“Contextual inquiry is a way for users to participate in the design
of general purpose systems. It is a technique for working with
users to help them articulate their current work practices, system
practices and associated experiences.” [15]
Contextual inquiry has three core concepts: the user is a partner in
the design process, in-depth understanding of the context is
considered central to the solution, and the whole process is very
focused. We believe that the rationale of a structured interviewing
technique like contextual inquiry would be a good fit to the design
of tools for scientific software development [16]. The exploratory
nature of these interviews would also enable the discovery of
knowledge that would benefit future tools for software
engineering in the computational sciences.
Evolving a set of specifications for such a tool would also be
facilitated by discussions on mailing lists open source
communities.

5. CONCLUSIONS
Currently there is a big gap in traditional software engineering
research and scientific software development practice. Leveraging

open source as a medium of technology transfer and encouraging
adoption of tools such as the one we have proposed here are
worthy avenues to explore. Although in this paper we discuss the
bioinformatics domain to a large extent, our proposed tool design
would no doubt be applicable to other scientific domains.
Communities of practice are prevalent in all scientific software
development domains and are excellent pointers to domain
knowledge.
Considering that domain-specific software development is such a
specialized activity, any tools that are developed to support this
activity should be based on a deep understanding of the work
practices of developers and broader requirements of these
communities. The tool design presented in this paper is just such
an example of a study of work practices and an in-depth
understanding of the domain. Moreover, we plan to use the
technique of contextual inquiry to refine and arrive at accurate
specifications for such a tool. We think that scientists and end-
user programmers would be receptive to such interactions, and the
end-result would be mutually beneficial.
This study has several components - an exploratory survey, non-
participant observation on domain-specific communities of
practice, and a proposed contextual inquiry method for tool
design. It serves as an example of how empirical studies can be
designed to advance software engineering for computational
sciences.

6. REFERENCES
[1] L. Stein, "Bioinformatics: Gone in 2012.," in O’Reilly
Bioinformatics Technology Conference (Keynote Address). San
Diego CA, 2003.
[2] M. Burnett, C. Cook, and G. Rothermel, "End-user
software engineering," Commun. ACM, vol. 47, pp. 53-58, 2004.
[3] J. Carver, "Empirical studies in end-user software
engineering and viewing scientific programmers as end-users:
Position statement," presented at Dagstuhl Seminar Proceedings
07081: End-User Software Engineering, 2007.
[4] S. M. Baxter, S. W. Day, J. S. Fetrow, and S. J.
Reisinger, "Scientific software development is not an oxymoron,"
PloS Computational Biology, vol. 2, September, 2006.
[5] J. Barker and J. Thornton, "Software engineering
challenges in bioinformatics," in International Conference on
Software Engineering (Keynote address). Edinburgh, Scotland,
UK, 2004.
[6] J. T. L. Wang, Q. Ma, and K. G. Herbert, "Software
engineering and knowledge engineering issues in bioinformatics,"
Handbook of Software Engineering and Knowledge Engineering,
vol. vol. 1., pp. 719-722, 2002.
[7] P. v. Heusden, "Applying software validation
techniques to bioperl," in Bioinformatics Open Source
Conference, 2004.
[8] E. S. Raymond, "The cathedral and the bazaar:Musings
on linux and open source by an accidental revolutionary."
Sebastopol, CA 95472, U.S.A.: O'Reilly and Associates, 1999.
[9] A. G. Koru, K. El-Emam, A. Neisa, and M. Umarji, "A
survey of quality assurance practices in biomedical open source
projects," Journal of Medical Internet Research, vol. 9, pp. e8,
2007.
[10] M. Umarji, S. E. Sim, and C. Lopes, "Archetypal
internet-scale source code searching," in Open Source Software
(OSS 2008). Milan Italy, 2008.

[11] M. W. Matthiessen, "Biowaredb: The biomedical
software and database search engine," Bioinformatics, vol. 19, pp.
2319-2320, 2003.
[12] J. L. E. Wenger, Situated learning: Legitimate
peripheral participation. England: Cambridge University Press,
1991.
[13] R. Holmes and R. J. Walker, "Supporting the
investigation and planning of pragmatic reuse tasks," in
Proceedings of the 29th International Conference on Software
Engineering: IEEE Computer Society, 2007.
[14] C. de Souza, J. Froehlich, and P. Dourish, "Seeking the
source: Software source code as a social and technical artifact," in
Proceedings of the 2005 international ACM SIGGROUP
conference on Supporting group work. Sanibel Island, Florida,
USA: ACM, 2005.
[15] H. Beyer and K. Holtzblatt, Contextual design: Defining
customer-centered systems: Morgan Kaufmann, 1998.
[16] C. Letondal and W. Mackay, "Participatory
programming and the scope of mutual responsibility: Balancing
scientific, design and software commitment," in Proceedings of
the eighth conference on Participatory design: Artful integration:
interweaving media, materials and practices - Volume 1. Toronto,
Ontario, Canada: ACM, 2004.

