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ABSTRACT
This paper recounts the findings of three recent code reviews and
discusses  the  wider  applicability  of  the  lessons  learned  to
scientific programming. 

Categories and Subject Descriptors
D.2.5  Testing  and  Debugging  –  code  inspections  and  walk-
throughs. 

D.2.0 Software engineering – general.

General Terms
Human Factors,  Verification.

Keywords
Review;  scientific  codes;  testing;  error  handling;  depth  of
inheritance; complexity; quality goals.

1.INTRODUCTION
Some software engineering practices could usefully be adopted by
scientific programmers. In order to recognize which these are, and
successfully communicate their value, it is useful to understand
the  context  which  has  given  rise  to  the  current  practices  of
scientific programmers.

In Section 2, this paper reports on the results of code reviews of
three scientific applications.  It  argues that the findings of these
code  reviews  show  that  practices  appropriate  for  developing
prototypes or throwaway code were misapplied to code for which
the quality goals and necessary practices were different.

Three  different  scientific  applications  were  reviewed.  The  first
application, referred to as SCHED, is used to schedule the run of
other programs, and to make transparent whether they are run on a
grid or in other computing environments. The author was asked to
review this application. The review report was used to guide the
last stage of the development before delivery.

The second, EXP, is used to run experimental stations at a large
facility. It controls motors to set up the experiment and acquires
the  data  from  the  detectors.  Six  people  including  the  author
reviewed EXP. The reviewers were asked to answer the question:
“How can we improve the maintainability?”

The  last,  LIMS,  is  a  web  application  and  database  to  store
laboratory data.The review of this application was not complete at
the time of writing. The author was not a reviewer of this code,
but  part  of  the  development  team.  The  reviewers  were  asked
“How extensible is it, and how can we improve the extensibility?”

The  reviews  of  EXP  and  LIMS were an exchange:  each  team
spent a week reviewing the other’s code.

There is a summary of the applications in table 1. 

Some scientific programming is done in a very exploratory way,
to answer a single question. The quality criterion is often “Proof
of Concept”.  In  particular,  defects are important  mainly if  they
cast doubt on the feasibility of the project. If a defect is clearly
fixable, then fixing it can reasonably be postponed.

Another  form of  scientific  programming is  the  development  of
large numerical codes to be run on High Performance Computing
(HPC) facilities. They also have a life cycle measured in decades.
Most of the work which has build  up the software engineering
body of knowledge was done in very different  environments  to
this. 

In section 3, this paper will also discuss to what extent the lessons
the reviews found are applicable to such codes, and propose some
steps that may help the software engineering and scientific coding
communities to work together more effectively.

Table 1. The applications reviewed

Name Age,
years Language KLOC

SCHED 2 Java 3

EXP 10 Java / C++ 50

LIMS 3 Java 32

2.FINDINGS
2.1The most significant issues found by the reviews are reported
here. These applications have many strengths, in their science and
their software. This report concentrates on the opportunities for
improvement. This report will not use their real names or
identifying details. When the review reports are quoted, no
reference will be given.

2.2Error Handling
The report on EXP found:

“Reportedly, [...] scientists tend to assume that failures are in [EXP] rather
than  in  hardware.  Sometimes the only failure in [EXP] is  a  failure  to
detect and report errors that have happened elsewhere. For example, the
fact  that  the  constructor  of  ServerThread  ignores  IOException  is
unacceptable.”

The consequence of the ignored exception is that a failure to make
a  network  connection  will  not  be  reported  clearly.  Of  all  the
components  of  a  computing  system,  the  network  is  the  least
reliable. This failure can be expected to occur many times in the
lifetime of the system.



Application  SCHED  had  many catch  blocks  that  print  a  stack
trace  and  continue.  Although  some  debugging  information  is
created, such code does not guarantee its intended postcondition.

Professional  software  engineers  learn  early  that  “what  can  go
wrong will”,  and  ensure  that  even  unexpected  failures  will  be
reported clearly. This approach is sometimes called “prevent the
impossible”.  The codes reviewed were clearly not  written with
this in mind.

2.3Complexity
One method was found to have an NPATH complexity of:
    770,943,744,005,163,750,045 
The  NPATH  complexity  is  often  two  to  the  power  of  the
cyclomatic  complexity.  The  number  of  test  cases  needed  to
adequately cover the code lies between the two [1].

All  of  the  applications  reviewed  had  some  methods  with  a
complexity too high for testing. 

2.4Duplicated Code
 One review found:

“An example of a class with a lot of duplicate code is [...], which has lines
copied from (or to) five other classes.”

Fifteen  per  cent  of  LIMS  is  lines  that  have  been  copied  and
pasted. EXP has 28 blocks of 100 or more lines that have been
copied  and  pasted.  So  it  is  not  surprising  that  the  depth  of
inheritance in these applications is low: 70% of classes have DIT
of 0 or 1.

In addition, both LIMS and EXP contain some classes with high
instability and low abstractness.

These  are  all  issues  that  are  not  important  in  prototype  or
throwaway code,  but  which become important  as the life cycle
gets longer.

2.5Tangled Code
In  EXP  and  LIMS  there  were  a  lot  of  circular  dependencies
among packages.  These were developed by teams of  eight  and
nine respectively. There were (until  recently) no mechanisms to
maintain  architectural  integrity  as  different  developers  added
code. Again, this is not an important question in prototype code.

2.6Quality Policy
None of these  projects  had a written and agreed set  of quality
goals. Appropriate goals were discussed as part of the reviews. 

SCHED and EXP are facilities. The code will be used for many
years –  in  the  case of EXP parts  of it  already have been  – so
failures  are  inevitable  as  the  environment  changes.  The
inconvenience  to  users  and  the  cost  of  maintenance  can  be
reduced by designing for robustness.

The cost of maintenance is the number of defect reports times the
average time to fix, which is the time to localize the fault plus the
time to  correct  it.  Improvements  in  robustness  will  reduce  the
number of reports.  Improvements in  error  reporting will  reduce
the time to localize a fault.  Improvements in the code structure
will reduce the time to correct it. 

The main obligation of LIMS is never to lose the users data. It is a
database with a web front end. Of the applications mentioned, it
most resembles main stream software applications, the core cases

from  which  the  ideas  of  software  engineering  have  been
developed.

Table 2. Quality goals and practices

Name Goal Coverage of
automatic test Issue tracker?

SCHED Robust none No

EXP Robust 2% Yes

LIMS Reliable 25% Yes

3.DISCUSSION
Some of the practices that were found in these reviews would be
strengths,  when  working  on  scientific  prototype  code.  For
example an issue tracker  is  not  essential  for such work,  nor  is
attention to error reporting.

Scientific programmers often work on prototype or throw-away
code  as  their  first  programming  experience.  Commercial
programmers  by  contrast  often  begin  with  a  maintenance  task.
(The author found an inch thick listing waiting on his new desk at
his  first  day  at  work  as  a  programmer.)  These  two  different
apprenticeships implicitly teach different lessons about what good
programming is,  and  instill  different  sets  of  practices.  Each  of
these sets of practices is fit for some purposes, but not for others. 

Another  set  of  scientific  applications  are  large  numerical
simulations.  The main quality goal  of these applications  is that
they can  solve some problems which  cannot  be  solved  in  any
other  way.  In  return,  the  scientists  who use them will  tolerate
defects that would be unacceptable in, say, an email client.

HPC  codes  are  among the  most  long-lived  in  existence.  HPC
developers  may  have  important  lessons  to  teach  software
enigineers who are working on long-lived applications.

One concern is that scientific prototype code, if successful, segues
into applications that are distributed for wider research use. Later
it  may be adopted for production purposes,  sometimes even for
safety critical use.

Standard  practice  for  developing  these  codes  includes  the
existence of system tests, complete runs of the application that are
performed  before  each  new  release  and  for  which  the  correct
results  are  often  known  by  experiment.  However,  the  code
coverage of these tests is often not known. Unit tests often do not
exist. 

Scientific  programming projects  would  benefit  from discussing
and writing a set of quality goals. The result will be a short report
answering the question “what would this code be like if it was
great?”  The  answer  is  often  obvious  for  commercial  software
development,  but  may  be  harder  to  find  in  a  scientific
environment.

The practice of unit testing would benefit scientific programming.
In LIMS, the existence of unit tests has helped to coordinate the
work of a scattered team. 

For some codes, system tests can only be run on an HPC facility,
and are expensive to perform. In some cases it will be possible to
devise unit tests that are quick to run and have high test coverage.



The fundamental idea is one that is familiar to scientists. There are
some hypotheses that are held about the code. A unit  test is an
economical  test  which  is  capable  of  refuting  a  significant
hypothesis about the code.

If code is written to be testable, it is often easier to understand.
Such  code  is  separated  into  small  units,  each  with  a  clearly
defined purpose [2].  For example there is likely to be a clearer
separation between the model and the solution method, along with
some  tests  capable  of  refuting  the  hypothesis  that  the  model
implemented  is  the  one described  in  the  theory document,  and
other  tests  capable  of refuting the  hypotheses  that  the  solution
methods converge and are accurate.

The software engineering literature about unit test contains little
about techniques in FORTRAN, or suitable for numerical codes.
There  is  room  here  for  some  convergence  between  the  two
cultures. 

When  testing  a  numerical  application,  a  goal  for  Def-Use
coverage seems especially relevant. A value is “defined” where it
is  calculated  and  “used”  where  it  becomes  input  for  another
calculation. A test suite has complete Def-Use coverage if every
feasible Def-Use from definition to use is exercised. Optimising
compilers routinely identify these pairs. 

Unfortunately  there  are  few  tools  which  report  this  coverage
measure. The development of tools to measure Def-Use coverage,
and  report  uncovered cases  in  a  user-friendly  way, is  an  open
challenge. This is one way that the computer science community
can contribute to numerical computing practice.

It is not the case that software engineering practices are the best
approach  for  every  coding  activity.  In  the  author's  experience,

claiming that it is weakens the case for SE methods when they are
appropriate. Software engineering is a culture too, and its methods
are fit for specific purposes, not for all purposes.

The reviewers gained an opportunity to be more deeply reflective
about  coding  practices.  For  example,  they  could  trace  the
consequence  of having no written quality policy all  the way to
individual code defects. One reviewer remarked about the review
“We  wouldn't  have  had  the  maturity  to  do  this  a  year  ago”.
Everyday coding  offers  few opportunities  to  gain  this  level  of
reflectivity.

The reviews of LIMS and EXP were done by mutual exchange:
each team agreed to spend a week reviewing the others' code. This
approach could be used by other scientific computing projects.
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