
Some Lessons Learned Reviewing Scientific Code
Chris Morris

STFC
Computational Science and Engineering Dept

Daresbury Laboratory
+44-(0)1925-603689

C.Morris@stfc.ac.uk

ABSTRACT
This paper recounts the findings of three recent code reviews and
discusses the wider applicability of the lessons learned to
scientific programming.

Categories and Subject Descriptors
D.2.5 Testing and Debugging – code inspections and walk-
throughs.

D.2.0 Software engineering – general.

General Terms
Human Factors, Verification.

Keywords
Review; scientific codes; testing; error handling; depth of
inheritance; complexity; quality goals.

1.INTRODUCTION
Some software engineering practices could usefully be adopted by
scientific programmers. In order to recognize which these are, and
successfully communicate their value, it is useful to understand
the context which has given rise to the current practices of
scientific programmers.

In Section 2, this paper reports on the results of code reviews of
three scientific applications. It argues that the findings of these
code reviews show that practices appropriate for developing
prototypes or throwaway code were misapplied to code for which
the quality goals and necessary practices were different.

Three different scientific applications were reviewed. The first
application, referred to as SCHED, is used to schedule the run of
other programs, and to make transparent whether they are run on a
grid or in other computing environments. The author was asked to
review this application. The review report was used to guide the
last stage of the development before delivery.

The second, EXP, is used to run experimental stations at a large
facility. It controls motors to set up the experiment and acquires
the data from the detectors. Six people including the author
reviewed EXP. The reviewers were asked to answer the question:
“How can we improve the maintainability?”

The last, LIMS, is a web application and database to store
laboratory data.The review of this application was not complete at
the time of writing. The author was not a reviewer of this code,
but part of the development team. The reviewers were asked
“How extensible is it, and how can we improve the extensibility?”

The reviews of EXP and LIMS were an exchange: each team
spent a week reviewing the other’s code.

There is a summary of the applications in table 1.

Some scientific programming is done in a very exploratory way,
to answer a single question. The quality criterion is often “Proof
of Concept”. In particular, defects are important mainly if they
cast doubt on the feasibility of the project. If a defect is clearly
fixable, then fixing it can reasonably be postponed.

Another form of scientific programming is the development of
large numerical codes to be run on High Performance Computing
(HPC) facilities. They also have a life cycle measured in decades.
Most of the work which has build up the software engineering
body of knowledge was done in very different environments to
this.

In section 3, this paper will also discuss to what extent the lessons
the reviews found are applicable to such codes, and propose some
steps that may help the software engineering and scientific coding
communities to work together more effectively.

Table 1. The applications reviewed

Name Age,
years Language KLOC

SCHED 2 Java 3

EXP 10 Java / C++ 50

LIMS 3 Java 32

2.FINDINGS
2.1The most significant issues found by the reviews are reported
here. These applications have many strengths, in their science and
their software. This report concentrates on the opportunities for
improvement. This report will not use their real names or
identifying details. When the review reports are quoted, no
reference will be given.

2.2Error Handling
The report on EXP found:

“Reportedly, [...] scientists tend to assume that failures are in [EXP] rather
than in hardware. Sometimes the only failure in [EXP] is a failure to
detect and report errors that have happened elsewhere. For example, the
fact that the constructor of ServerThread ignores IOException is
unacceptable.”

The consequence of the ignored exception is that a failure to make
a network connection will not be reported clearly. Of all the
components of a computing system, the network is the least
reliable. This failure can be expected to occur many times in the
lifetime of the system.

Application SCHED had many catch blocks that print a stack
trace and continue. Although some debugging information is
created, such code does not guarantee its intended postcondition.

Professional software engineers learn early that “what can go
wrong will”, and ensure that even unexpected failures will be
reported clearly. This approach is sometimes called “prevent the
impossible”. The codes reviewed were clearly not written with
this in mind.

2.3Complexity
One method was found to have an NPATH complexity of:
 770,943,744,005,163,750,045
The NPATH complexity is often two to the power of the
cyclomatic complexity. The number of test cases needed to
adequately cover the code lies between the two [1].

All of the applications reviewed had some methods with a
complexity too high for testing.

2.4Duplicated Code
 One review found:

“An example of a class with a lot of duplicate code is [...], which has lines
copied from (or to) five other classes.”

Fifteen per cent of LIMS is lines that have been copied and
pasted. EXP has 28 blocks of 100 or more lines that have been
copied and pasted. So it is not surprising that the depth of
inheritance in these applications is low: 70% of classes have DIT
of 0 or 1.

In addition, both LIMS and EXP contain some classes with high
instability and low abstractness.

These are all issues that are not important in prototype or
throwaway code, but which become important as the life cycle
gets longer.

2.5Tangled Code
In EXP and LIMS there were a lot of circular dependencies
among packages. These were developed by teams of eight and
nine respectively. There were (until recently) no mechanisms to
maintain architectural integrity as different developers added
code. Again, this is not an important question in prototype code.

2.6Quality Policy
None of these projects had a written and agreed set of quality
goals. Appropriate goals were discussed as part of the reviews.

SCHED and EXP are facilities. The code will be used for many
years – in the case of EXP parts of it already have been – so
failures are inevitable as the environment changes. The
inconvenience to users and the cost of maintenance can be
reduced by designing for robustness.

The cost of maintenance is the number of defect reports times the
average time to fix, which is the time to localize the fault plus the
time to correct it. Improvements in robustness will reduce the
number of reports. Improvements in error reporting will reduce
the time to localize a fault. Improvements in the code structure
will reduce the time to correct it.

The main obligation of LIMS is never to lose the users data. It is a
database with a web front end. Of the applications mentioned, it
most resembles main stream software applications, the core cases

from which the ideas of software engineering have been
developed.

Table 2. Quality goals and practices

Name Goal Coverage of
automatic test Issue tracker?

SCHED Robust none No

EXP Robust 2% Yes

LIMS Reliable 25% Yes

3.DISCUSSION
Some of the practices that were found in these reviews would be
strengths, when working on scientific prototype code. For
example an issue tracker is not essential for such work, nor is
attention to error reporting.

Scientific programmers often work on prototype or throw-away
code as their first programming experience. Commercial
programmers by contrast often begin with a maintenance task.
(The author found an inch thick listing waiting on his new desk at
his first day at work as a programmer.) These two different
apprenticeships implicitly teach different lessons about what good
programming is, and instill different sets of practices. Each of
these sets of practices is fit for some purposes, but not for others.

Another set of scientific applications are large numerical
simulations. The main quality goal of these applications is that
they can solve some problems which cannot be solved in any
other way. In return, the scientists who use them will tolerate
defects that would be unacceptable in, say, an email client.

HPC codes are among the most long-lived in existence. HPC
developers may have important lessons to teach software
enigineers who are working on long-lived applications.

One concern is that scientific prototype code, if successful, segues
into applications that are distributed for wider research use. Later
it may be adopted for production purposes, sometimes even for
safety critical use.

Standard practice for developing these codes includes the
existence of system tests, complete runs of the application that are
performed before each new release and for which the correct
results are often known by experiment. However, the code
coverage of these tests is often not known. Unit tests often do not
exist.

Scientific programming projects would benefit from discussing
and writing a set of quality goals. The result will be a short report
answering the question “what would this code be like if it was
great?” The answer is often obvious for commercial software
development, but may be harder to find in a scientific
environment.

The practice of unit testing would benefit scientific programming.
In LIMS, the existence of unit tests has helped to coordinate the
work of a scattered team.

For some codes, system tests can only be run on an HPC facility,
and are expensive to perform. In some cases it will be possible to
devise unit tests that are quick to run and have high test coverage.

The fundamental idea is one that is familiar to scientists. There are
some hypotheses that are held about the code. A unit test is an
economical test which is capable of refuting a significant
hypothesis about the code.

If code is written to be testable, it is often easier to understand.
Such code is separated into small units, each with a clearly
defined purpose [2]. For example there is likely to be a clearer
separation between the model and the solution method, along with
some tests capable of refuting the hypothesis that the model
implemented is the one described in the theory document, and
other tests capable of refuting the hypotheses that the solution
methods converge and are accurate.

The software engineering literature about unit test contains little
about techniques in FORTRAN, or suitable for numerical codes.
There is room here for some convergence between the two
cultures.

When testing a numerical application, a goal for Def-Use
coverage seems especially relevant. A value is “defined” where it
is calculated and “used” where it becomes input for another
calculation. A test suite has complete Def-Use coverage if every
feasible Def-Use from definition to use is exercised. Optimising
compilers routinely identify these pairs.

Unfortunately there are few tools which report this coverage
measure. The development of tools to measure Def-Use coverage,
and report uncovered cases in a user-friendly way, is an open
challenge. This is one way that the computer science community
can contribute to numerical computing practice.

It is not the case that software engineering practices are the best
approach for every coding activity. In the author's experience,

claiming that it is weakens the case for SE methods when they are
appropriate. Software engineering is a culture too, and its methods
are fit for specific purposes, not for all purposes.

The reviewers gained an opportunity to be more deeply reflective
about coding practices. For example, they could trace the
consequence of having no written quality policy all the way to
individual code defects. One reviewer remarked about the review
“We wouldn't have had the maturity to do this a year ago”.
Everyday coding offers few opportunities to gain this level of
reflectivity.

The reviews of LIMS and EXP were done by mutual exchange:
each team agreed to spend a week reviewing the others' code. This
approach could be used by other scientific computing projects.
ACKNOWLEDGMENTS
Thanks to all those who offered code for review and participated
in performing the reviews; for the purpose of this paper they must
remain anonymous. Thanks to Judith Segal for a discussion of
refutable hypotheses and test coverage. Thanks to Yiannis
Kanellopoulos for calculating DIT for EXP and LIMS. Thanks
also to the reviewers of this paper.

3.REFERENCES
[1]Nejmeh, B. NPATH: a measure of execution path complexity
and its applications. CACM 31,2 (February 1988) 188 - 200 .

 [2] Janzen, D and Saiedian, H. 2008. Does Test-Driven
Development Really Improve Software Design Quality? IEEE
Software March 2008 77-84.

