
Models of scientific software development
Judith Segal

The Open University

Milton Keynes MK7 6AA UK

+44 1908 659793

j.a.segal@open.ac.uk

ABSTRACT
Over the past decade, I have performed several field studies with
scientists developing software either on their own or together with
software engineers. Based on these field study data, I identify a
model of scientific software development as practiced in many
scientific laboratories and communities. This model does not fit
the standard software engineering models. For example, the tasks
of requirement elicitation and software evaluation are not clearly
delineated. Nevertheless, it appears to be successful within the
context in which it is used. In the context in which scientists
collaborate with software engineers, however, I describe problems
which arose from the clash of this model with a traditional,
phased software engineering model. Given these models, I
discuss the issues which have to be addressed in order to
determine the software techniques and tools which might best
support scientific software development in different contexts.

Categor ies and Subject Descr iptors
H 1.2 [Human factors]:

General Terms
Human Factors

Keywords
Scientific software development, software development practice,
field studies

1. INTRODUCTION
The over-arching question underlying my research is: how might
software engineers best support professional end user developers
such as scientists? Professional end user developers [1] are
people working in highly technical, knowledge rich professions,
such as financial mathematicians, scientists and engineers, who
develop their own software in order to advance their own
professional goals. Unlike many end user developers, they are
used to formal languages and abstraction and hence tend to have

few problems with coding per se. Like all other end user
developers, however, they do not describe themselves as software
developers and have little formal education or training in software
development.

In order to address my over-arching question, I feel it is
imperative to try and uncover how professional end user
developers actually go about their development tasks, in order to
identify tools, techniques etcetera which might meet their needs
and fit in with the context of their software development. I thus
undertook several field studies, of financial mathematicians, of
earth and planetary scientists, and most recently, of structural
biologists [1], [2] and [3].

As I shall describe in section 2 below, my field studies reveal
ways of software development by scientists which run counter to
traditional models of software engineering. For example,
requirement and software evaluation activities are not clearly
delineated. Nevertheless, these models appear to be successful in
a particular context, which I shall characterise.

Section 3 again draws on my field study data to describe the
problems which occurred when the context of development
changed and it became necessary to involve software engineers in
the development process because the software involved was just
too complex for professional end user development. I shall
illustrate the clashes which occurred between the scientists, who
believed they knew how to develop software (but according to the
model described in section 2), and the software engineers, who
believed they knew how to develop software (but according to a
traditional phased model of software development).

In section 4, I reflect on the limitations of my field study data and
probe the question of whether other contexts and other viable
models of scientific software development exist. Section 5 returns
to the data of an ongoing field study and is thus somewhat
speculative. Whereas sections 2 and 3 concentrate on the
differences between professional end user developers and the
more traditional software engineers, section 5 indicates how both
groups might learn from each other about scientific software
development In section 6, I return to my over-arching research
question in order to discuss the issues which need to be addressed
in order to identify those established software engineering
techniques and methods which best fit the various contexts of
scientific software development.

I begin by considering scientists developing software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2. A Model Of Scientific Software
Development By Scientists
I shall begin by discussing possibly the most common context in
which scientists develop software, that is when the software is
intended for use either by the developer herself/himself or by
closely co-located colleagues, for example, people working in the
same laboratory. I shall then describe another context of scientists
developing software in which the software is developed within a
closely co-located group but intended for the wider scientific
community of which the developers form a part.

My field studies, [1], [2] and [3], reveal that scientists who
develop software for themselves or for their close colleagues, do
so in a very iterative and incremental manner. Requirements
emerge, as the understanding of both the software and the science
evolves. A piece of software is produced, some reflection takes
place (‘ is this really what I/you want? Can I improve it?), and
development continues. There is no discrete phase of
requirements gathering or of software evaluation. Testing is of
the cursory nature which would enrage a software engineer (‘does
the software do what I expect it to do with inputs of the type I
would expect to use? If I don’ t have any real expectations of the
output, does the software behave in a way I really would not
expect given inputs of the type I would expect to use?’).

The development of scientific software in the context in which the
software is not intended for local use but rather for use within a
close-knit but distributed scientific community does not seem to
differ significantly from the description above. In one situation
with which I am familiar, the core developers are firmly
established as scientists in the scientific community, are working
either in the same room or in adjacent rooms and have been
working together for at least 4 years. The requirements for the
first version of a piece of software arise from the developers’ own
experience of the scientific field and from discussions with local
scientists. After testing is conducted in the same way as described
above, the software is sent to another ‘ trusted’ laboratory
(‘ trusted’ in the sense that the developers are confident that this
other laboratory will engage with the software and communicate
back their findings), before being released into the wider scientific
community. I infer that there is a sense of community-wide
ownership in the software from the fact that the community
contributes many ‘bug reports’ (which either do, in fact, report
bugs or make suggestions for improvements, that is, suggest new
requirements). In addition, a few members of the wider
community have contributed extensions to the original software.

The model of software development described above runs counter
to any traditional model of software engineering especially as
regards testing, but appears to be widespread. For example,
researchers studying scientists carrying out high performance
computing developments have also noted a reliance on emergent
requirements, see, for example, [4]. The presumption must be
that, in the context in which these models are used, scientists feel
that they work. I shall now discuss the characteristics of this
context.

The gathering of requirements in this informal way is predicated
on the developer(s) being firmly embedded in the community and
so having strong intuitions as to the initial requirements; being
able to develop quickly a piece of software to reify those
requirements and then being able to evaluate this software by

having scientists close at hand (or well known to the developer)
who are willing to engage. (It’s much more difficult to resist a
request from a close colleague to ‘have a look at this and tell me
what you think’ than a more formal request). As to testing, I will
now propose an argument that the cursory nature of testing as
described above is entirely consistent with the nature of
experimental science. As many philosophers and historians of
science attest, see, for example, [5], scientists take as a given that
the apparatus by which they obtain their data works. Only if the
data run counter to what the scientist broadly expects, does she/he
draw back and start examining her/his underlying theory and
assumptions, one of which is that the apparatus works. If this is
true when the apparatus is a telescope, may it not be equally true
for software regarded as a mechanism for obtaining or
manipulating data? If the developer and any other users get
broadly expected, or at least, not totally unexpected, results from
the software, is it not then consistent with their experimental
experience for them to assume the software works?

What I am saying here is that there are at least some situations in
which software engineers should not try to impose the full
machinery of traditional software engineering on scientific
software development. It is not the case that scientists developing
their own software in the contexts discussed above are able coders
but totally undisciplined, as was once said to me by a software
engineer. They are just as disciplined as the context demands. A
group of professional end user developers following an
unsuccessful collaboration with software engineers used the term
‘ factory methods’ disparagingly to mean the traditional phased
model of software development, in which each phase, such as
requirements elicitation or testing, is discrete and undertaken by
different people, or by the same person with different hats on.
The scientists were quite clear that these methods were not
appropriate in their context of development.

There are, of course, other contexts of scientific software
development, and in the next section I shall describe some
problems which arise in the context when software developers and
scientists collaborate, and which may have their origins in the
very different models of software development held by these two
groups.

3. When Scientists Meet Software Engineers
In this section, I shall describe (aspects of) two field studies. In
both, the scientists were the customers of the software
development. In the first, the focus is on the scientists failing to
meet the software engineers’ expectations based on the latter’s
model of traditional, phased software development. In the
second, the emphasis is on the software engineers failing to meet
the scientists’ expectations based on the latter’s model of software
development as characterised in section 2 above.

3.1 Scientists failing to meet software
engineers’ expectations
The first situation is described in [3] where I discuss the
difficulties that arose when some space scientists and engineers
collaborated with software engineers in order to develop a library
of components for embedded instrument software, and attempted
to follow a phased, traditional software development as
recommended by the European Space Agency. Requirements
posed the biggest problem: the software engineers expected to
receive a formal requirements document; the scientists consistent

with their previous experience of software development expected
the requirements to emerge. User testing was done in the cursory
manner described in section 2 above. Specification documents,
did not fulfil their communication role (the scientists were used to
informal, face-to-face communications). Nevertheless I have to
report that the instrument with its embedded software was
delivered to the satellite in time, though it isn’ t yet known
whether the software will perform as expected (the instrument
does not reach its destination for at least another 5 years).

3.2 Software engineers failing to meet
scientists’ expectations
In the second as-yet unpublished field study, the development was
steered by scientists who were, or had been, professional end user
developers. Among other challenges facing the development were
those of requirements and scheduling.

In the following extract from a tape transcript, one of these
scientists describes his experience of providing requirements in
his own laboratory. This scientist had developed his own
software for decades but, having risen to the top of the scientific
tree, is no longer doing so.

‘So all I told one person [the developer] was: I want you to
find a way of doing a … fast graph matching problem, in an
interface that is easy to use and shows you everything you
need to know on the interface, and that’s all I said. And he
went away for a year and came back and here is the system.’

The developer in question was a professional end user developer:
he knew the science; he worked in the laboratory where the
software was going to be used, and thus had the resources to
continually firm up the requirements and evaluate the software in
the manner described in section 2 above. It was thus absolutely
reasonable to provide this particular developer with such a terse
statement of requirements.

The scientist went on to say that this situation is typical:

 ‘ In most of the types of things we … think of a requirement
to do, we don’ t know the requirements at a precise exact level,
we don’ t know the answer in any way, we can define the
problem basically in half a page of text and expect the
[developer] to go away and do it.’

But of course problems arise with this approach when the
developer is not a professional end user developer but a software
engineer. In this case, the software engineer doesn’ t understand
the science; doesn’ t have any intuition as to the nature of the
requirements; is not embedded in the particular scientific
community of practice. The informal way of gathering
requirements as described in section 2, does not work. One can’ t
just, as in the quote above, ‘expect the developer to go away and
do it’ .

Another obvious point of departure between the professional end
user developers’ model of software development and that of the
software engineer, is to do with the time that development takes.
The professional end user developer does not usually have to
worry about explicit requirements gathering or testing (as
discussed above); or about portability, or about forced
maintainability when for example, operating systems or third
party software is upgraded, or about security of data or working
on a shared code-base. (I am not talking here about professional

end user developers who work on high performance computing
systems, which presents a slightly different case, see [4]). These
issues add greatly to development time, and the evidence from my
field studies is that professional end user developers, used as they
are to a model of quick iterative development, do not appreciate
this. A software engineer told me that for any particular software
task, his estimate of the time it would take was usually about three
times greater than the estimate of the professional end user
developers with whom he was collaborating.

In this section, I’ve discussed the problems that arose in
collaborations between scientists with one model of scientific
software development and software developers with another
(though of course, the expectations of the professional end user
developers described in 3.2 would probably not be met by any
software engineer regardless of the model of development he/she
espoused). This discussion is based entirely on my field study
data and might thus be thought to be somewhat limited. In
particular, my field studies only revealed two scientific software
development models, one for the software engineers and one for
the professional end user developers, and were conducted in a
limited number of contexts. In the next section, I shall discuss
other models and other contexts.

4. Limitations of my field study data
As described above, from my field study data I have identified one
model of scientific software development for scientists and one
for software engineers. The former is a model of rapid,
incremental, iterative development with integrated phases of
requirements gathering and software evaluation, and somewhat
cursory testing of the software at the end of (what may be termed)
a release. The latter is based on the traditional, phased, broadly
waterfall model. The question arises as to whether other models
exist (and just haven’ t arisen in my studies).

The answer in the professional end user developer case is
probably ‘yes, to a certain extent’ – there are, I think, deviations
to the model in the context of high performance computer
systems, where effort has to be expended on code optimisation
and parallelisation, [6]. Nevertheless, in the absence of any
disconfirming evidence, I argue that the model described herein is
the standard model by which professional end user developers
produce software in a context which does not involve high
performance computing and in which the software is being
developed for use by a close-knit scientific community to which
the developer belongs.

The answer to the question of whether there are any models of
software development not identified in my field studies, is very
definitely ‘yes’ as regards the software engineering world. This
does have models of development other than the traditional,
phased water-fall model. It just so happens that this latter was the
one espoused by the software engineers in my field studies, but
there are other non-traditional models around. The ones which
are attracting most attention at the moment, I think, are the ones
which come under the umbrella of ‘Agile Methods’ , subscribing
to the values of the agile manifesto
(http://www.agilemanifesto.org). These include XP (eXtreme
Programming), [7], DSDM (Dynamic Systems Development
Methods), see http://www.dsdm.org/, and the Crystal family of
methodologies, [8]. Each of these methodologies presents a
coherent account of tried and tested practices in such software

development approaches as rapid application development,
prototyping and incremental development. And as I have
demonstrated above, rapid application and incremental
development are at the heart of professional end user development
practice. So my next question is: could the ‘clashing models’
problems described in section 3 be alleviated if the software
engineers were to espouse an agile model of software
development? There is some evidence in the literature to suggest
that the answer to this question is ‘yes’ . There have been some
case studies, for example, [9] and [10], in which software
developers have described successful experiences of using agile
methods with scientists. On the other hand, the experience of my
co-editing a special issue of IEEE Software devoted to developing
scientific software has revealed that many scientists equate ‘agile’
with the model of professional end user development described in
section 2 above, and take no cognisance of the disciplined
practices of each of these methods.

I explored the question of agile methods in the case of the field
study with the space scientists, [3], where, following the approach
of [11], I suggested that there were some parts of the software –
the ‘back end’ parts essentially – where it would be profitable to
use a traditional phased software engineering approach to
development, and parts, notably those to do with user
requirements, where agile methods might be preferred.

My field studies, of necessity, only covered a limited number of
contexts of scientific software development. These were contexts
in which developers and users were embedded in the same close-
knit scientific community as in section 2, and where scientists
were working in partnership with software engineers, as described
by section 3, either because the software was rather too complex
to be developed by scientists alone or because it was designed to
serve the needs of a rather disparate scientific community. It is
easy to imagine contexts of scientific professional end user
development other than those described by my field studies where
the model described in section 2 does not suffice and the
development of scientific software could be improved by better
use of software engineering techniques and tools. For example,
there is the situation of ‘software creep’ , where a scientist
develops a piece of software as a one-off to solve a particular
problem; the software is then adopted by his colleagues who
modify it in an ad-hoc manner to solve each of their own
particular problems; it then becomes part of a suite of software
available to the whole community - and lurking within it is the
ticking time-bomb of untested ad-hoc cobbled together software.
There is also the example of research software developed within a
research environment according to the model described above,
being redeveloped to become production software for use outside
research laboratories in, for example, medical environments.
Other examples include those where the software is very complex
or safety critical. Just as I argue that it is not the case that
scientists developing software should always be encouraged to
adopt blanket software engineering methods, so I argue that it is
not always the case that software engineering methods are entirely
irrelevant to scientific software development. Consider for
example the ‘ factory methods’ (phased development) described in
section 2 as being unfit for the development of scientific software
to support the research of a close-knit scientific community. It is
clear that these methods are sometimes perfectly fitting for
scientific software development, for example, in the
redevelopment of research software to production software when

all that the former might contribute to the latter is the
requirements as specified by the behaviour of the software. I shall
return to the issue of fitting software engineering methods to the
appropriate scientific development context in section 6 below.

In the sections of the paper so far based on the field study data,
that is sections 2 and 3, I have been at pains to contrast the models
of scientific software development held by scientists and software
engineers and to describe the problems that may be caused by the
clashing of these models. In the next section, based on an
ongoing field study and thus very preliminary, I demonstrate that
it is possible for scientists and software engineers to learn from
each other about scientific software development.

5. Learning from each other
Despite its title, this section focuses on professional end user
developers – or rather, one professional end user developer – and
the lessons he learnt from working with software engineers. This
reflects the fact that my field studies are ongoing and I hope to
pursue the topic further. At the end of the section, I speculate on
what software engineers might learn from working with
professional end user developers, but I don’ t actually know
whether there are firm grounds for this speculation: this is still a
matter for investigation.

The developer who is the focus of this section is a typical
professional end user developer He describes himself
emphatically as a “ research scientist” despite the fact that his
working life is spent on developing or modifying software for the
use of the laboratory in which he works. He drifted into this work
as a result of the software development he had to do for the
purposes of his PhD thesis (in science) which led to his gaining a
reputation in his laboratory of being a capable software person.
Both his scientific colleagues in the lab in which he works and the
software engineers with whom he collaborates hold him in great
respect both for his domain knowledge and for his coding ability.

In an interview with the writer, he said he had learnt ‘a vast
amount’ from working with software engineers. Part of it was the
result of working on a shared code-base, which he had never done
before.

‘Pretty much previously, if I’d needed to write something, I
wrote it, all of it. It was rare even in Fortran that I would
import a library that wasn’ t a maths library…to some extent I
had done a bit before of maintaining other people’s code, but
not as varied as in [the collaboration with the software
engineers] of going into a bit of code and seeing that it’s
written in a very different way to the way that I would have
written it. And that’s interesting both in that you learn new
ways of writing code and discover that the way you’ve been
doing it is extremely long-winded and in many cases actually
substantially less robust than the way someone else has done
it – and that’s quite interesting because before I never really
had reason to review anyone else’s code.’

His awareness of certain issues became heightened:

 ‘… it does come down to maintainability and portability and
that is something I had been only dimly aware of previously’

And especially his appreciation of the importance of
testing, as the following dialogue between him and the
interviewer (me) demonstrates:

Professional end user developer: ‘That has also been
something new for me. Testing just didn’ t happen. .. One
assumes that if the numbers came out of the other end, they
were right. And that is in hindsight, an embarrassingly stupid
assumption.”

Interviewer: “Yes, but not an assumption you can always test
as a scientist because you don’ t always know what the right
output should be.”

Professional end user developer: “No but you can try and
write code that is testable … and so the concept of writing
code that is testable has been a very useful one that I have
tried to carry over particularly from Java where I’ve learnt it
to the other languages where it’s not as easy or the tools don’ t
exist to make it as easy.”

As to what the software engineers might have learnt from the
professional end user developers, I speculate it is the lesson that is
one of the main arguments of this paper: that there is no such
thing as ‘one model fits all’ , and that the way in which
professional end user developers construct software makes perfect
sense in the context of their being embedded in a close-knit
scientific user community..

6. Software engineer ing and scientific
software development: a discussion
Thus far in this paper, I have identified various contexts in which
scientific software is developed. These include: scientists
developing software for their own laboratory or close-knit
scientific community (where the model of software development
described in section 2 might well suffice); software engineers
developing software in partnership with scientists in section 3,
and scientists developing software in contexts where software
engineering tools and techniques might well have a place, such as
where the user group is more diverse than that containing the
developers, as discussed in section 4. I now turn my attention to
the complex question of which established software engineering
tools and techniques might best support scientific software
developers in these various development contexts.

There are, I think, several issues to be explored here. The first
three echo Glass [13], where he argues for a mapping between
application domains and software engineering methodologies.

1. The identification of those established techniques in
software engineering which might assist scientific software
developers.

2. The characterisation of those contexts in which scientific
software is developed, along dimensions such as: the degree
of acceptable risk; the extent to which the developers are
integrated in the same domain as the users; the extent of
software engineering knowledge of the developers, etcetera.

3. The establishment of a mapping between software
techniques identified in 1 and contexts as characterised in 2.

I introduce an extra issue to those of Glass:

4. How might scientists be made aware of those software
engineering techniques and tools which might be relevant to
their development?

With respect to the first three issues: in section 4, I touched lightly
on the debate as to whether the problems encountered when
software engineers and scientists developed software together,
might be alleviated if the software engineers involved were to
adopt agile methods. As far as scientists developing their own
software is concerned, Wilson, [12], expresses concern at the lack
of quality of much of this software, and found that scientific
software developers of his acquaintance did not know of the most
basic software engineering tools, such as version control systems.
His response was to make available on the web a ‘software
carpentry course’ , in which he teaches techniques that he has
identified as being most useful to the professional end user
developer (see http://www.swc.scipy.org).

As to the fourth issue, there has been much concern expressed
recently as to the size of the chasm between academic software
engineering and practitioners (see, for example, [14] and [15]).
One can only speculate on how much greater this chasm must be
when the practitioners think of themselves primarily as scientists
rather than as software developers. However good a job software
engineers do at exploring the first three issues, their efforts will
count for nought if scientific software developers don’ t at the very
least become aware of their results.

I know of two attempts to introduce a course on software
engineering techniques into science/engineering undergraduate
courses (Wilson in personal correspondence with the author, and
Kelly [16]). The course discussed by Kelly was deemed by her to
be unpopular, which she ascribes in part to its not making enough
links with the application domain. There is no evidence as to how
successful these two courses were in subsequently influencing the
scientist/engineers’ development practices.

In section 5 above, I describe a professional end user developer
who revised his philosophy of software testing after working on a
project with a software engineer. I suggest that much software
development knowledge among scientists is garnered by such
happy accidents or by sharing knowledge with other scientists
developing software. The sharing and creating of knowledge
through communities (or networks) of practice is well-known; the
problems this poses in the context of scientists developing
software are discussed in some detail in [1]. One such problem is
that there might not be a community of practice; there may be
only one scientist developing software in a lab.

Clearly, much work needs to be done on the issues raised here.
The contribution made by this paper is that it has articulated the
relevant issues and made a start at addressing them. I look
forward to a fruitful discussion.

Acknowledgements
I should like to acknowledge my heartfelt gratitude to all those
scientists who were so generous in spending time with me and
letting me into the secrets of their trade. I should also like to
thank Chris Morris (especially), Diane Kelly, Marian Petre, Hugh
Robinson, Helen Sharp and Greg Wilson, for many fruitful
discussions.

7. REFERENCES
[1] Segal, J. 2007, ‘Some problems of professional end user

developers’ , VLHCC, IEEE Symposium on Visual
Languages and Human-Centric Computing, 2007, 111-118

[2] Segal J., 2001, ‘Organisational Learning and Software
Process Improvement: A Case Study’ , in Advances in
Learning Software Organizations, K-D Althoff, R.L.
Feldmann, W. Muller (Eds.), Lecture Notes in Computer
Science, Vol. 2176, Springer, 68-82.

[3] Segal J., 2005, ‘When software engineers met research
scientists: a case study’ , Empirical Software Engineering,
10, 517-536.

[4] Carver J.C., Kendall R.P., Squires S.E., Post D.E., 2007,
Software Development Environments for scientific and
engineering software: a series of case studies. Proc. ICSE
2007 .

[5] Chalmers, A.F., 1982. What is this thing called science?
Open Universtiy Press, Milton Keynes, UK

[6] Squires S., Van de Vanter M.L., Votta L.G., 2006, ‘Software
productivity research in high performance computing’ , CT
Watch Quarterly, November, 2006, 52-61.

[7] Beck, K. 2000. Extreme Programming Explained.
Addison- Wesley

[8] Cockburn, A., 2002, Agile Software Development. Addison-
Wesley, Pearson Educational.

[9] Bache E. 2003, ‘Building software for scientists: a report
about incremental adoption of XP’ , at XP2003, Genoa, Italy.

[10] Kane, D. 2003. ‘ Introducing agile development into
bioinformatics: an experience report’ , Agile Development
Conference, 2003.

[11] Boehm, B. & Turner, R. 2004. Balancing Agility and
Discipline. Addison-Wesley, Pearson Educational.

[12] Wilson, Gregory V., 2006, ‘Where’s the real
bottleneck in scientific computing?’ , American
Scientist, 94(1), 5-6

[13] Glass, R.L., 2004, ‘Matching methodology to problem
domain’ , Comm ACM, 47(5), 19-21

[14] Perry, D., Porter, A. and Votta, L. 2000. Empirical studies
of software engineering: a roadmap. Proceedings of the
International Conference on The Future of Software
Engineering, Finkelstein, A. (ed.), ACM Press, pp 345-355

[15] Zelkowitz, M., Wallace, D. and Binkley, D. 2003.
Experimental validation of new software technology.
Lecture notes on empirical software engineering, Juristo N.
Moreno AM (eds.), World Scientific Publishing Co., pp 229-
263.

[16] Kelly, D.F., 2007, ‘A software chasm: software
engineering and scientific computing’ , IEEE Software,
24(6), 120-199.

