

1

Large Efficient Table-Top Teraflop Computing
Victor Basili12, Thiago Craveiro1, Daniela Cruzes2, Kate Despain1,

Bill Dorland1, Lorin Hochstein3 , Nico Zazworka1, Marvin Zelkowitz1
1-University of Maryland 2-Fraunhofer Center Maryland 3-University of Nebraska
College Park, Maryland College Park, Maryland Lincoln, Nebraska

{basili | thiago | nico | mvz}@cs.umd.edu dcruzes@fc-md.umd.edu
{bdorland | kdespain}@umd.edu lorin@cse.unl.edu

ABSTRACT
Inexpensive graphics processors are being applied to the general
computational problem as a way to provide supercomputer capabilities
at an affordable price. But little research has gone into understanding
the difficulty in developing such programs in terms of productivity and
reliability of the resulting code. The University of Maryland is
undertaking a project to apply its expertise in understanding the
development of high performance computer programs to this domain. In
this paper we describe a project where a computational science problem
is being developed and its development history captured by our set of
development tools and the results are being analyzed.

Categories and Subject Descriptors
D.2.8 [Metrics]: Process metrics, Product metrics, Performance metrics

General Terms
Measurement, Performance, Design, Reliability, Experimentation,
Languages.

Keywords
Graphical processing units, High-performance computing, Scientific
computation.

1. INTRODUCTION

Around 1990, the dominant architecture for scientific computing began
to transition from special-purpose vector supercomputers to massively
parallel assemblies of commodity CPU's. For a period of years, the
actual productivity of the median supercomputer user probably did not
improve dramatically, although this is difficult to quantify, as little or no
effort was expended during the transition to gather data that would
allow one to quantify productivity objectively. Total theoretical peak
performance (i.e., its GFLOPS (Giga- [billions of] Floating Point
Operations per second) rate and simple benchmarks were used to
differentiate new products, with no formal effort undertaken to measure
how usable they were. Eventually, MPI emerged as the most widely
used communications package for programming among these
processors, and the physical networks became fast and wide enough to
allow broad advances in computational thinking.

We stand today at the threshold of a new transition, from large machines
composed of thousands of nodes of single-to-few, homogeneous,
commodity processors, to a new technology of hundreds or thousands of
nodes, each composed of heterogeneous, multicore hardware elements,
with new and deeper levels of memory hierarchy. For example, a
typical node will likely consist of a multicore CPU containing several
processor elements, together with hundreds of coprocessors such as can

be found in present-day graphics processing units (GPUs). Scientists
studying complex systems with large numerical simulations will have to
manage new levels of memory and communication and to develop
algorithms with millions of concurrent threads rather than thousands to
continue to make broad advances in computational thinking. Already,
several vendors are competing in this rapidly expanding market, notably
NVIDIA, IBM and AMD.

We are investigating the transition to petascale computing with
commodity stream processors (e.g., GPUs). Three different communities
are involved in this work. (1) A team of scientists working in a
particular application area which relies heavily on large-scale numerical
simulations (astrophysical turbulence) will move from using the largest
parallel supercomputers available today to using new clusters of
heterogeneous, multicore nodes (including using GPUs as coprocessors)
for leading-edge scientific studies. (2) Applied mathematicians will
accelerate this scientific transition by developing scientific middleware
packages for GPUs for a collection of widely-used algorithms
(including fast multipole, particle-in-cell, discontinuous Galerkin, and
pseudo-spectral solvers). (3) A software engineering team with deep
experience in measuring total productivity will assess the success of this
total effort, providing objective information about programmability,
maintainability, portability and raw performance.

GP-GPU Computing. Recently there has been dramatic progress in
heterogeneous multicore computing within the GP-GPU1 paradigm.
Examples include computers built around the IBM Cell Broadband
Engine, and clusters whose nodes contain multicore CPU's together with
one or more GPUs, where the latter are used as special-purpose compute
engines. The IBM Cell BE is the graphics chip for the Sony Playstation
3; as a vector-parallel multi-processor, it is capable of running scientific
calculations at a sustained rate of a 200-300 GFLOPS.

NVIDIA’s GeForce 8800 GTX GPU is a PCI Expressed-based 2D/3D
graphics card on which we have achieved comparable performance on
scientific problems. Compared to CPU performance, which doubles
every 18 months, GPU performance over the last few years has doubled
every 6 months. This has occurred as GPUs moved to multithreaded,
multiprocessor devices which are designed specifically for data-parallel
problems. It is broadly understood that as compute speed consequently
greatly outstrips memory access speeds, scientific programmers will be
forced to rethink their choice of algorithms and their implementation of
parallelism.

1 General Purpose computation on Graphical Processing Units

2

Fig. 1. Over a period of years, GPU performance has improved
more rapidly than CPU performance.

In Section 2 of this paper we briefly describe the physics application we
are studying, and in Section 3 we summarize the high performance
computing development environment we have developed for studying
“traditional” high performance computing domains. We will apply this
environment to the GP-GPU development problem.

2. PARALLEL ALGORITHMS ON GPUS

Here we briefly summarize the application domain we will study. The
goal is simply to provide context for our research and not necessarily to
give the full details of high energy physics research.

Plasma physics. Magnetohydrodynamic (MHD) turbulence is
encountered in a wide variety of space and astrophysical plasmas,
including the solar wind, accretion disks around black holes, and the
plasma between stars in galaxies (the interstellar medium). Such
turbulence often plays a crucial role in the evolution of astrophysical
systems by redistributing heat and momentum, and by influencing the
observed radiation via the heating of plasma and the acceleration of
highly energetic particles. An understanding of the properties of
magnetized plasma turbulence is thus a key problem in space physics
and astrophysics.

In MHD theory, all the particles are assumed to move together. At the
large scales at which turbulence is driven in most space and
astrophysical environments, this is a good approximation. However, at
small scales, where turbulent energy is converted to heat, this
foundational assumption of MHD theory breaks down. Kinetic theory is
required to describe how different particles are affected by the small-
scale, electromagnetic fluctuations. We require a theory that
simultaneously describes the larger scale electromagnetic turbulent
fluctuations in a manner that is consistent with MHD theory and also the
self-consistent fluctuations and particle motions at smaller scales, where
the various plasma components respond very differently from one
another.

This problem is computationally challenging because of the need to
solve for both the real space dynamics of the turbulence and the velocity
space dynamics of the plasma. Because petascale level of calculations
are needed to solve this problem, a GP-GPU solution allows for an

inexpensive route to providing the necessary hardware to achieve this
solution.

Parallel algorithms. We have developed a gyrokinetic simulation code
for today's terascale computers. We are porting this code (AstroGK) to
a CPU-GPU cluster with libraries and algorithms that will scale
efficiently to petaflop performance. On present terascale computers, we
typically use O(105-106) real-space points and O(103) velocity-space
points to resolve the kinetic distribution functions.

Programming GPUs. Moving from an MPI-based, conventional
parallelization on a large supercomputer to the “relentlessly
multithreaded” environment of GPU computing is roughly as
complicated as was the move from vector supercomputers to massively
parallel supercomputers, and presents a number of challenges to the
programmer. NVidia provides a programming interface called CUDA
[5], which exposes a SIMD-style data-parallel programming model.
CUDA allows programmers to execute performance-critical portions of
their code, called kernels, on a graphics card containing GPUs. The
interface consists of a runtime library and a modest extension of the C
programming language, which allows the programmer to specify which
functions run on the device (i.e., the graphics card) and which variables
are located on the device, through the use of type qualifiers.

While a GPU may support thousands of threads, it is not possible for all
these threads to communicate directly with each other through fast
shared memory because of limited memory in each GPU. Instead, only
batches of threads called blocks are capable of this type fast
communication. CUDA requires the programmer to divide up data
arrays to be processed efficiently by such blocks.

A further challenge is the lack of maturity of existing development
tools. No GPU-specific debuggers exist, and the programmer cannot
even invoke print statements in functions that run on the GPU. If a
program executing on the GPU crashes, the programmer does not
receive any error message: the only hint of such a crash is an execution
time much shorter than expected. As the programmer is expecting
dramatic reductions in execution time, this incorrect behavior may
initially go unnoticed.

Finally, while individual GPUs hold great performance in increasing
program performance relative to conventional workstations, if they are
to be competitive with the performance modern supercomputers it will
require multiple GPUs executing in parallel, most likely in combination
with MPI.

This then is the context of this research. We believe that the CPU-GPU
environment provides a hardware environment that should allow for
inexpensive petascale computing. However, the difficulty of developing
such code and the need to measure the ultimate productivity of the
development team should help answer the question of whether this
approach provides an effective platform for solving complex scientific
computations that require massively large computational resources.

3. PRODUCTIVITY MEASUREMENT

We have been involved since 2004 in understanding productivity in the
supercomputing domain as part of the DARPA High Productivity
Computing Systems (HPCS) program, where DARPA is developing a
new class of petascale machines. Because of the similarity of most
supercomputing resources and the GP-GPU environment described

0

50

100

150

200

250

300

350

2001 2002 2003 2004 2005 2006

Year

G
FL

O
P

S Intel
ATI
NVIDIA

3

previously, we believe that we can apply our tools and knowledge
gained from the HPCS program in this new environment in order to
address the issues mentioned at the end of the previous section.

The HPCS project has goals of “providing a new generation of
economically viable high productivity computing systems for national
security and for the industrial user community,” and initiating “a
fundamental reassessment of how we define and measure performance,
programmability, portability, robustness and ultimately, productivity in
the HPC domain”2. In order to reassess the definitions and measures in a
scientific domain it was necessary to study the basis and source of those
definitions and measures. However the large amount of tacit information
that is merely in people’s minds often remains neglected.

As a way to understand these differences, we developed a set of tools
and protocols to study programmer productivity in the HPC community.
Our concern had been to understand the effort involved and defects
made in developing such programs. We also want to develop models of
workflows that accurately explain the process that HPC programmers
use to build their codes. Issues such as time involved in developing
serial and parallel versions of a program, testing and debugging of the
code, optimizing the code for a specific parallelization model (e.g., MPI,
OpenMP) and tuning for a specific machine architecture are all topics of
study. If we have those models, we can then work on the more crucial
problems of what tools and techniques better optimize a programmer’s
performance to produce quality code more efficiently.

We have conducted human-subject experiments at various locations
across the U.S. in graduate level HPC courses and with interviews with
professional programmer at HPC centers (Fig. 2). Multiple students are
routinely given the same assignment to perform, and we conducted
experiments to control for the skills of specific programmers (e.g.,
experimental meta-analysis) in different environments. Due to the
relatively low costs, student studies are an excellent environment to
debug protocols that might be later used on practicing HPC
programmers. An early result needed to validate our process was to
verify that students could indeed produce good HPC codes and that we
could measure their increased performance.

Table 1 is one set of data that shows that students achieved speedups of
approximately 3 to 7 on an 8-processor HPC machine. (CxAy means
class number x, assignment number y.) In general, on an n-processor
machine, if a program executes on a single processor in k seconds, you
would like to be able to execute the program in k/n seconds; hence a
speedup of n. However, in practice, speedups of n are approached but
rarely achieved since algorithms cannot be parallelized so precisely.
Paradoxically, some programmers fail to achieve a speedup of even 1,
meaning a program runs faster on a single processor than on a
multiprocessing system.

As an example of the research we conducted, we measured productivity
in the HPC domain as part of understanding HPC workflows; however,
what does productivity mean in this domain [3]? The following is one
model that we can derive from the fact that the critical component of
HPC programs is the speedup achieved by using a multiprocessor HPC
machine over a single processor [6].

2 http://www.highproductivity.org

Data set Programming Model Speedup on 8 processors
Speedup measured relative to serial version:

C1A1 MPI mean 4.74, sd 1.97, n=2

C3A3 MPI mean 2.8, sd 1.9, n=3

C3A3 OpenMP mean 6.7, sd 9.1, n=2

Speedup measured relative to parallel version run on 1 processor:

C0A1 MPI mean 5.0, sd 2.1, n=13

C1A1 MPI mean 4.8, sd 2.0, n=3

C3A3 MPI mean 5.6, sd 2.5, n=5

C3A3 OpenMP mean 5.7, sd 3.0, n=4

Table 1: Mean, standard deviation, and number of subjects
for computing speedup on Game of Life program.

In manufacturing productivity is relatively easy to compute. For a pencil
manufacturer, counting the pencils produced per day divided by the
cost of running the factory gives an easy way to compute productivity.
For software, computing the source lines of code (SLOC) written per
day gives an approximation for productivity, but has never been a
satisfactory measure. In the HPC world, SLOC/day is even less relevant.
A serial version of the program does solve the problem, so what “work”
is accomplished in getting the program to run on a parallel machine?

Productivity in the HPC domain is often defined as the relative speedup
of a program using an HPC machine compared to a single processor
divided by the relative effort to produce the HPC version of the program
divided by the effort to produce a single processor version of the
program:

This computation divides high speedup (a desired trait) by the cost of
creating the parallel version (an undesirable trait) and thus tries to
balance the benefits of faster execution with the drawbacks of increased
development time.

 Table 2 presents an example of productivity calculations. In order to
normalize the data, we used a standard implementation as our reference
implementation in which to compare all implementations. In Table 2 we
chose program 2, which has a complete data set and had the least serial
execution time. Program 5 did execute faster, but that group did not
report the total effort to develop the serial code, so we would be unable
to compute a productivity measure for it. In this example, the group
who wrote program 3 was the most productive. While its execution time
of 12.8 sec. was not the fastest, its total effort of 10 hours was by far the
least.

4

Fig.2. Studies conducted.

3.1 Experimental environment

As part of this research we have developed a series of tools to study the
HPC domain. This set of tools includes:
1. Websites for knowledge derivation and dissemination

− http://HPCBugBase.org – A defect database where
developers can enter defects found in their code and learn
about common problems found in HPC development..

− http://hpcs.cs.umd.edu – HPCS Development Time website.
This is the main website for understanding development time
issues for the HPC domain. All of the tools mentioned below
are accessible via this website. A general overview of the tool
collection is given in Fig. 3.

2. Data capture for seamlessly and unobtrusively collecting
development data from programmers.
− UMD instrumentation (UMDINST)– Shell-level timestamps

from compilation and execution. This is implemented as a
wrapper added to the user’s login shell.

− Experiment Manager – Tools to collect self-reported effort
data.

− Shell logger – Capture all shell commands automatically
without the user’s involvement.

3. Data process for converting the data for use by the analysis
programs.
− Raw data importer – Import UMDINST data to database

− DB Sanitizer – Remove privacy data from database. This is a
critical issue when dealing with student data from universities.
It can also be a major problem with proprietary corporate and
government data as well.

4. Visualization and analysis for understanding the data.
− Automatic Performance Measuring System – Automatically runs

scripts of programs to recheck the results of previously submitted
programs. This allows us to easily check performance of each
program and to correlate it with the development data we collected.

− CodeVizard – View source code evolution. This is somewhat live
a visualized form of the diff program, but provides additional
information. (See Figures 5 and 6.)

− Data Analyzer – Visualization of UMDINST and Experiment
Manager data

− Activity graph – View workflow information

Fig. 3. Structure of HPC development and analysis tools.

In addition, we also use the following tools developed by others:

− Hackystat – Low-level timestamps for many tools. Hackystat
was development at the University of Hawaii [4].

− UCSB execution harness – Execute programs under controlled
conditions

Our research model is described in Fig. 4. as the interaction of the
preceding set of tools. See references [1] and [2].

Program 1 2* 3 4 5

Serial effort (hrs) 3 7 5 15

Total effort (hrs) 16 29 10 34.5 22

Serial Exec (sec) 123.2 75.2 101.5 80.1 31.1

Parallel Exec (sec) 47.7 15.8 12.8 11.2 8.5

Speedup 1.58 4.76 5.87 6.71 8.90

Relative Effort 2.29 4.14 1.43 4.93 3.14

Productivity 0.69 1.15 4.11 1.36 2.83

*- Reference serial implementation

Table 2. Productivity experiment: Game of Life

5

Fig. 4. Research Model.

3.2 Preliminary GPU studies

To answer questions about productivity using the GPU programming
model we are currently undertaking studies with the professionals and
students in the physics domain described earlier (Table 3). The majority
of them have a background in physics (only one of them in computer
science) and some worked with parallel languages before, but none of
them with GPUs.

Physics 4
Plasma Physics 1
Energy Science 1
Astrophysics 1
Applied Math and Scientific Computation 1
Physics and Astronomy 1
Physics and Math 1
Computer Science 1

Graduate students 5
Undergraduate students 2
Research scientists 4

Table 3. Study participants.

Our initial setup focuses on a broad spectrum of research questions:
− Effort: Understand how much effort is required to achieve

sufficient performance (speedup) on a GPU for a specific problem
or class of problems.

− Learning curve: How much time does it take to train novices in
the new programming models? What kind of background
experience or approach is beneficial?

− Defects: What are commonly made mistakes by novices and
experts? How do you avoid them? How do these defects compare
with defects made in MPI?

− Workflow: What is the best way to achieve a correct fast working
GPU code as quickly as possible?

In contrast to the single programmer problems that we have been
studying in controlled classroom experiments in the HPC domain, we
are now applying our toolset to several active development processes
with multiple programmers. We capture, visualize, and analyze using
following data probes:

• Program compilation data: During each compile we capture
timestamps of the compile information if the compile has been
successful or if it failed any information about the compiled
sources including the source code.

• Program run data: Each program executed including its
timestamp and shell-level command used to run the program is
captured.

• Shell commands: All shell commands entered during the
development are captured. Calls like the invocation of make, the
performance measurement with time and gprof give clues to the
programmer’s current activity.

• Background Questionnaire: In the beginning of the study we
hand out general questionnaires that provides us with general
information about each individual subject. Questions include
information about their background and experience in software
development and parallel computing. We also asked for their
personal goals and reasons to learn this new technology.

• Daily Diary: We asked the users to provide us with daily reports of
their programming activities.

• Interviews: In some cases we invited programmers for interviews
to describe their current work and latest experiences.

As an example, we give a sample analysis of code developed by a GPU
novice. The problem the subject addressed was a port of an existing
component in FORTRAN to a GPU. To understand the process the
reader must know that the current programming model implemented for
an NIVDIA GPU (i.e., CUDA) is based on the C language. Therefore
the subject was forced to either rewrite his code in C or to use an
additional third party library to perform GPU calls from the FORTRAN
code. He decided for the latter since such a library was already
developed at the University of Maryland.

It took the subject six days to finish the task. Surprisingly our analysis
shows that most of the time (the first three days) he was dealing with
issues of understanding the library calls and getting an already existing
FORTRAN template code to run on his machine. After overcoming
these issues it took him only three hours on day four to make the
necessary changes to his code, with some additional time on the last two
days to measure performance. (See Figs. 5 and 6) Our analysis results
were later verified by interviewing the participant.

The NVIDIA GPU has its own high-speed shared memory, instruction
set, controllers and several processors (with associated small local
memory). The graphics processor can be considered as a compute
device that is capable of efficiently executing data parallel
computations, where the same program is executed on many data
elements in parallel. The 8800GTX processor we use has 128 stream
processors that are able to access 768 MB of onboard DRAM. The
processors are arranged as 16 independent multiprocessors that are
composed of 8 processor units, which share 16 kB of local shared
memory. Programs executing on the stream processors are called
threads and can access the device’s DRAM and on-chip memory
through the following read-write memory: local 32-bit registers per
processor, and a parallel data cache; read-only constant cache that is
shared by all the processors; and a read-only texture cache that is shared
by all the processors and speeds up reads from the texture memory
space. To achieve high performance, one must understand the
limitations and capabilities of this architecture.

6

Our prototype GPU study is the Particle in Cell (PIC) problem. This
involves numerical simulation of particles with Coulomb forces and
their interaction (movement) in space. Space is divided in cells or boxes.
Different abstraction levels and parameters are used for different
physics with the same basic algorithm. The common goals are to port
existing code to GPU, build new GPU code from scratch, create PIC
library to implement code for own physics need as fast as possible (with
best performance achievable).

Since the fall of 2007 we have been collecting experience forms from
each developer, daily effort forms on activities worked on, and semi-
structured interviews. Our experiment manager collects snapshots of all
code developed each time the compiler is invoked.

Although similar to HPC programming, GPU programming has its own
characteristics. We are developing a separate bug base to reflect the
unique characteristics of GPU programming.

4. CONCLUSIONS

At present our GPU work is only beginning, but we believe there are
great similarities between HPC programming using traditional
supercomputers and this new generation of graphics processors. After
we complete our initial “shakedown” test of the PIC port, we intend to
tackle the larger MHD problem given in Section 2 of this paper. This
work is still preliminary, but we think it will lead to relevant insights in
the months ahead.

5. ACKNOWLEDGEMENTS

This research was supported in part by Air Force grant FA8750-05-1-
0100 to the University of Maryland. We’d also like to acknowledge the
following faculty for allowing us to conduct experiments in their

classes: Alan Edelman [MIT], John Gilbert [UCSB], Mary Hall,
Aiichiro Nakano, Jackie Chame [USC], Allan Snavely [UCSD], Jeff
Hollingsworth, Alan Sussman, Uzi Vishkin, [UMD], Ed Luke [MSU],
Henri Casanova [UH], and Glenn Luecke [ISU].
6. REFERENCES

[1] L. Hochstein, T. Nakamura, V. R. Basili, S. Asgari, M. V. Zelkowitz,
J. K. Hollingsworth, F. Shull, J. Carver, M. Voelp, N. Zazworka, P.
Johnson, Experiments to Understand HPC Time to Development,
CTWatch, November 2006.

[2] L. Hochstein, T. Nakamura, F. Shull, N. Zazworka, V. R. Basili, M.
V. Zelkowitz, An Environment for Conducting Families of Software
Engineering Experiments, Advances in Computers 74, Elsevier, 2008.

[3] The International Journal of High Performance Computing
Applications, (18)4, Winter 2004.

[4] P. M. Johnson, H. Kou, J. Agustin, Q. Zhang, A. Kagawa, T.
Yamashita, Practical Automated Process and Product Metric Collection
and Analysis in a Classroom Setting: Lessons Learned from Hackystat-
UH. International Symposium on EMp. Soft. Eng., Los Angeles, 2004,
136-144

[5] NVIDIA CUDA Compute Unified Device Architecture Programming
Guide, Version 1.10. November 29, 2007.

[6] Zelkowitz M., V. Basili, S. Asgari, L. Hochstein, J. Hollingsworth,
and T. Nakamura, Productivity measures for high performance
computers, Computer Society International Symposium on Software
Metrics, Como, Italy, September, 2005.

Fig. 5. CodeVizard output. Each vertical line is a compile, and each mark on line represents a component touched by that compile.

7

Fig. 6. Six days of development needed to port component. (Each day is represented by alternating gray and black bands on the X-axis.)

