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ABSTRACT 
Inexpensive graphics processors are being applied to the general 
computational problem as a way to provide supercomputer capabilities 
at an affordable price. But little research has gone into understanding 
the difficulty in developing such programs in terms of productivity and 
reliability of the resulting code. The University of Maryland is 
undertaking a project to apply its expertise in understanding the 
development of high performance computer programs to this domain. In 
this paper we describe a project where a computational science problem 
is being developed and its development history captured by our set of 
development tools and the results are being analyzed. 

Categories and Subject Descriptors 
D.2.8 [Metrics]:  Process metrics, Product metrics, Performance metrics 

General Terms 
Measurement, Performance, Design, Reliability, Experimentation, 
Languages. 

Keywords 
Graphical processing units, High-performance computing, Scientific 
computation. 

1. INTRODUCTION 
 
Around 1990, the dominant architecture for scientific computing began 
to transition from special-purpose vector supercomputers to massively 
parallel assemblies of commodity CPU's.  For a period of years, the 
actual productivity of the median supercomputer user probably did not 
improve dramatically, although this is difficult to quantify, as little or no 
effort was expended during the transition to gather data that would 
allow one to quantify productivity objectively.  Total theoretical peak 
performance (i.e., its GFLOPS (Giga- [billions of] Floating Point 
Operations per second) rate and simple benchmarks were used to 
differentiate new products, with no formal effort undertaken to measure 
how usable they were.  Eventually, MPI emerged as the most widely 
used communications package for programming among these 
processors, and the physical networks became fast and wide enough to 
allow broad advances in computational thinking.   
 
We stand today at the threshold of a new transition, from large machines 
composed of thousands of nodes of single-to-few, homogeneous, 
commodity processors, to a new technology of hundreds or thousands of 
nodes, each composed of heterogeneous, multicore hardware elements, 
with new and deeper levels of memory hierarchy.  For example, a 
typical node will likely consist of a multicore CPU containing several 
processor elements, together with hundreds of coprocessors such as can 

be found in present-day graphics processing units (GPUs).  Scientists 
studying complex systems with large numerical simulations will have to 
manage new levels of memory and communication and to develop 
algorithms with millions of concurrent threads rather than thousands to 
continue to make broad advances in computational thinking.  Already, 
several vendors are competing in this rapidly expanding market, notably 
NVIDIA, IBM and AMD.   
 
We are investigating the transition to petascale computing with 
commodity stream processors (e.g., GPUs). Three different communities 
are involved in this work.  (1) A team of scientists working in a 
particular application area which relies heavily on large-scale numerical 
simulations (astrophysical turbulence) will move from using the largest 
parallel supercomputers available today to using new clusters of 
heterogeneous, multicore nodes (including using GPUs as coprocessors) 
for leading-edge scientific studies.  (2) Applied mathematicians will 
accelerate this scientific transition by developing scientific middleware 
packages for GPUs for a collection of widely-used algorithms 
(including fast multipole, particle-in-cell, discontinuous Galerkin, and 
pseudo-spectral solvers).  (3) A software engineering team with deep 
experience in measuring total productivity will assess the success of this 
total effort, providing objective information about programmability, 
maintainability, portability and raw performance.   
 
GP-GPU Computing. Recently there has been dramatic progress in 
heterogeneous multicore computing within the GP-GPU1 paradigm.  
Examples include computers built around the IBM Cell Broadband 
Engine, and clusters whose nodes contain multicore CPU's together with 
one or more GPUs, where the latter are used as special-purpose compute 
engines. The IBM Cell BE is the graphics chip for the Sony Playstation 
3; as a vector-parallel multi-processor, it is capable of running scientific 
calculations at a sustained rate of a 200-300 GFLOPS.  
 
NVIDIA’s GeForce 8800 GTX GPU is a PCI Expressed-based 2D/3D 
graphics card on which we have achieved comparable performance on 
scientific problems. Compared to CPU performance, which doubles 
every 18 months, GPU performance over the last few years has doubled 
every 6 months.  This has occurred as GPUs moved to multithreaded, 
multiprocessor devices which are designed specifically for data-parallel 
problems.  It is broadly understood that as compute speed consequently 
greatly outstrips memory access speeds, scientific programmers will be 
forced to rethink their choice of algorithms and their implementation of 
parallelism.   
 

                                                                 
1 General Purpose computation on Graphical Processing Units 
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Fig. 1. Over a period of years, GPU performance has improved 
more rapidly than CPU performance. 
 
In Section 2 of this paper we briefly describe the physics application we 
are studying, and in Section 3 we summarize the high performance 
computing development environment we have developed for studying 
“traditional” high performance computing domains. We will apply this 
environment to the GP-GPU development problem.  
 
2. PARALLEL ALGORITHMS ON GPUS 
 
Here we briefly summarize the application domain we will study. The 
goal is simply to provide context for our research and not necessarily to 
give the full details of high energy physics research. 
 
Plasma physics. Magnetohydrodynamic (MHD) turbulence is 
encountered in a wide variety of space and astrophysical plasmas, 
including the solar wind, accretion disks around black holes, and the 
plasma between stars in galaxies (the interstellar medium).  Such 
turbulence often plays a crucial role in the evolution of astrophysical 
systems by redistributing heat and momentum, and by influencing the 
observed radiation via the heating of plasma and the acceleration of 
highly energetic particles.  An understanding of the properties of 
magnetized plasma turbulence is thus a key problem in space physics 
and astrophysics.  
  
In MHD theory, all the particles are assumed to move together.  At the 
large scales at which turbulence is driven in most space and 
astrophysical environments, this is a good approximation.  However, at 
small scales, where turbulent energy is converted to heat, this 
foundational assumption of MHD theory breaks down.  Kinetic theory is 
required to describe how different particles are affected by the small-
scale, electromagnetic fluctuations. We require a theory that 
simultaneously describes the larger scale electromagnetic turbulent 
fluctuations in a manner that is consistent with MHD theory and also the 
self-consistent fluctuations and particle motions at smaller scales, where 
the various plasma components respond very differently from one 
another.    
 
This problem is computationally challenging because of the need to 
solve for both the real space dynamics of the turbulence and the velocity 
space dynamics of the plasma.  Because petascale level of calculations 
are needed to solve this problem, a GP-GPU solution allows for an 

inexpensive route to providing the necessary hardware to achieve this 
solution. 
 
Parallel algorithms.  We have developed a gyrokinetic simulation code 
for today's terascale computers.  We are porting this code (AstroGK) to 
a CPU-GPU cluster with libraries and algorithms that will scale 
efficiently to petaflop performance. On present terascale computers, we 
typically use O(105-106) real-space points and O(103) velocity-space 
points to resolve the kinetic distribution functions.  
 
Programming GPUs.  Moving from an MPI-based, conventional 
parallelization on a large supercomputer to the “relentlessly 
multithreaded” environment of GPU computing is roughly as 
complicated as was the move from vector supercomputers to massively 
parallel supercomputers, and presents a number of challenges to the 
programmer. NVidia provides a programming interface called CUDA 
[5], which exposes a SIMD-style data-parallel programming model. 
CUDA allows programmers to execute performance-critical portions of 
their code, called kernels, on a graphics card containing GPUs. The 
interface consists of a runtime library and a modest extension of the C 
programming language, which allows the programmer to specify which 
functions run on the device (i.e., the graphics card) and which variables 
are located on the device, through the use of type qualifiers. 
 
While a GPU may support thousands of threads, it is not possible for all 
these threads to communicate directly with each other through fast 
shared memory because of limited memory in each GPU. Instead, only 
batches of threads called blocks are capable of this type fast 
communication. CUDA requires the programmer to divide up data 
arrays to be processed efficiently by such blocks.  
 
A further challenge is the lack of maturity of existing development 
tools. No GPU-specific debuggers exist, and the programmer cannot 
even invoke print statements in functions that run on the GPU. If a 
program executing on the GPU crashes, the programmer does not 
receive any error message: the only hint of such a crash is an execution 
time much shorter than expected. As the programmer is expecting 
dramatic reductions in execution time, this incorrect behavior may 
initially go unnoticed.  
 
Finally, while individual GPUs hold great performance in increasing 
program performance relative to conventional workstations, if they are 
to be competitive with the performance modern supercomputers it will 
require multiple GPUs executing in parallel, most likely in combination 
with MPI.  
 
This then is the context of this research. We believe that the CPU-GPU 
environment provides a hardware environment that should allow for 
inexpensive petascale computing. However, the difficulty of developing 
such code and the need to measure the ultimate productivity of the 
development team should help answer the question of whether this 
approach provides an effective platform for solving complex scientific 
computations that require massively large computational resources. 
 
3. PRODUCTIVITY MEASUREMENT 
 
We have been involved since 2004 in understanding productivity in the 
supercomputing domain as part of the DARPA High Productivity 
Computing Systems (HPCS) program, where DARPA is developing a 
new class of petascale machines. Because of the similarity of most 
supercomputing resources and the GP-GPU environment described 
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previously, we believe that we can apply our tools and knowledge 
gained from the HPCS program in this new environment in order to 
address the issues mentioned at the end of the previous section. 
 
The HPCS project has goals of “providing a new generation of 
economically viable high productivity computing systems for national 
security and for the industrial user community,” and initiating “a 
fundamental reassessment of how we define and measure performance, 
programmability, portability, robustness and ultimately, productivity in 
the HPC domain”2. In order to reassess the definitions and measures in a 
scientific domain it was necessary to study the basis and source of those 
definitions and measures. However the large amount of tacit information 
that is merely in people’s minds often remains neglected. 
 
As a way to understand these differences, we developed a set of tools 
and protocols to study programmer productivity in the HPC community.  
Our concern had been to understand the effort involved and defects 
made in developing such programs. We also want to develop models of 
workflows that accurately explain the process that HPC programmers 
use to build their codes. Issues such as time involved in developing 
serial and parallel versions of a program, testing and debugging of the 
code, optimizing the code for a specific parallelization model (e.g., MPI, 
OpenMP) and tuning for a specific machine architecture are all topics of 
study. If we have those models, we can then work on the more crucial 
problems of what tools and techniques better optimize a programmer’s 
performance to produce quality code more efficiently. 
 
We have conducted human-subject experiments at various locations 
across the U.S. in graduate level HPC courses  and with interviews with 
professional programmer at HPC centers (Fig. 2). Multiple students are 
routinely given the same assignment to perform, and we conducted 
experiments to control for the skills of specific programmers (e.g., 
experimental meta-analysis) in different environments.  Due to the 
relatively low costs, student studies are an excellent environment to 
debug protocols that might be later used on practicing HPC 
programmers. An early result needed to validate our process was to 
verify that students could indeed produce good HPC codes and that we 
could measure their increased performance.  
 
Table 1 is one set of data that shows that students achieved speedups of 
approximately 3 to 7 on an 8-processor HPC machine. (CxAy means 
class number x, assignment number y.) In general, on an n-processor 
machine, if a program executes on a single processor in k seconds, you 
would like to be able to execute the program in k/n seconds; hence a 
speedup of n. However, in practice, speedups of n are approached but 
rarely achieved since algorithms cannot be parallelized so precisely. 
Paradoxically, some programmers fail to achieve a speedup of even 1, 
meaning a program runs faster on a single processor than on a 
multiprocessing system. 
 
As an example of the research we conducted, we measured productivity 
in the HPC domain as part of understanding HPC workflows; however, 
what does productivity mean in this domain [3]? The following is one 
model that we can derive from the fact that the critical component of 
HPC programs is the speedup achieved by using a multiprocessor HPC 
machine over a single processor [6]. 
 

                                                                 
2 http://www.highproductivity.org 

Data set Programming Model Speedup on 8 processors 
Speedup measured relative to serial version: 

C1A1 MPI mean 4.74, sd 1.97, n=2 

C3A3 MPI mean 2.8, sd 1.9, n=3 

C3A3 OpenMP mean 6.7, sd 9.1, n=2 

Speedup measured relative to parallel version run on 1 processor: 

C0A1 MPI mean 5.0, sd 2.1, n=13 

C1A1 MPI mean 4.8, sd 2.0, n=3 

C3A3 MPI mean 5.6, sd 2.5, n=5 

C3A3 OpenMP mean 5.7, sd 3.0, n=4 

Table 1: Mean, standard deviation, and number of subjects 
for computing speedup on Game of Life program. 

 
In manufacturing productivity is relatively easy to compute. For a pencil 
manufacturer, counting the pencils produced per day divided by the  
cost of running the factory gives an easy way to compute productivity. 
For software, computing the source lines of code (SLOC) written per 
day gives an approximation for productivity, but has never been a 
satisfactory measure. In the HPC world, SLOC/day is even less relevant. 
A serial version of the program does solve the problem, so what “work” 
is accomplished in getting the program to run on a parallel machine? 
 
Productivity in the HPC domain is often defined as the relative speedup 
of a program using an HPC machine compared to a single processor 
divided by the relative effort to produce the HPC version of the program 
divided by the effort to produce a single processor version of the 
program: 

 
This computation divides high speedup (a desired trait) by the cost of 
creating the parallel version (an undesirable trait) and thus tries to 
balance the benefits of faster execution with the drawbacks of increased 
development time. 
 
 Table 2 presents an example of productivity calculations. In order to 
normalize the data, we used a standard implementation as our reference 
implementation in which to compare all implementations. In Table 2 we 
chose program 2, which has a complete data set and had the least serial 
execution time. Program 5 did execute faster, but that group did not 
report the total effort to develop the serial code, so we would be unable 
to compute a productivity measure for it.  In this example, the group 
who wrote program 3 was the most productive. While its execution time 
of 12.8 sec. was not the fastest, its total effort of 10 hours was by far the 
least. 
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Fig.2. Studies conducted. 
 
3.1 Experimental environment 
 
As part of this research we have developed a series of tools to study the 
HPC domain.  This set of tools includes:  
1. Websites for knowledge derivation and dissemination 

− http://HPCBugBase.org – A defect database where 
developers can enter defects found in their code and learn 
about common problems found in HPC development.. 

− http://hpcs.cs.umd.edu – HPCS Development Time website. 
This is the main website for understanding development time 
issues for the HPC domain. All of the tools mentioned below 
are accessible via this website. A general overview of the tool 
collection is given in Fig. 3. 

2. Data capture for seamlessly and unobtrusively collecting 
development data from programmers. 
− UMD instrumentation (UMDINST)–  Shell-level timestamps 

from compilation and execution. This is implemented as a 
wrapper added to the user’s login shell. 

− Experiment Manager –  Tools to collect self-reported effort 
data. 

− Shell logger –  Capture all shell commands automatically 
without the user’s involvement. 

3. Data process for converting the data for use by the analysis 
programs. 
− Raw data importer –  Import UMDINST data to database 

− DB Sanitizer –  Remove privacy data from database. This is a 
critical issue when dealing with student data from universities. 
It can also be a major problem with proprietary corporate and 
government data as well. 

4. Visualization and analysis for understanding the data. 
− Automatic Performance Measuring System – Automatically runs 

scripts of programs to recheck the results of previously submitted 
programs. This allows us to easily check performance of each 
program and to correlate it with the development data we collected. 

− CodeVizard –  View source code evolution. This is somewhat live 
a visualized form of the diff program, but provides additional 
information. (See Figures 5 and 6.) 

− Data Analyzer –  Visualization of UMDINST and Experiment 
Manager data 

− Activity graph –  View workflow information 
 

 
Fig. 3. Structure of HPC development and analysis tools. 
 
In addition, we also use the following tools developed by others: 

− Hackystat –  Low-level timestamps for many tools. Hackystat 
was development at the University of Hawaii [4 ]. 

− UCSB execution harness – Execute programs under controlled 
conditions 

 
Our research model is described in Fig. 4. as the interaction of the 
preceding set of tools. See references [1] and [2]. 

Program  1 2* 3 4 5 

Serial effort (hrs) 3 7 5 15  

Total effort (hrs) 16 29 10 34.5 22 

Serial Exec (sec) 123.2 75.2 101.5 80.1 31.1 

Parallel Exec (sec) 47.7 15.8 12.8 11.2 8.5 

Speedup 1.58 4.76 5.87 6.71 8.90 

Relative  Effort 2.29 4.14 1.43 4.93 3.14 

Productivity 0.69 1.15 4.11 1.36 2.83 

*- Reference serial implementation 

Table 2. Productivity experiment: Game of Life 
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Fig. 4. Research Model. 

 
3.2 Preliminary GPU studies 
 
To answer questions about productivity using the GPU programming 
model we are currently undertaking studies with the professionals and 
students in the physics domain described earlier (Table 3). The majority 
of them have a background in physics (only one of them in computer 
science) and some worked with parallel languages before, but none of 
them with GPUs.   
 

Physics 4 
Plasma Physics 1 
Energy Science 1 
Astrophysics 1 
Applied Math and Scientific Computation 1 
Physics and Astronomy 1 
Physics and Math 1 
Computer Science 1 

Graduate students 5 
Undergraduate students 2 
Research scientists 4 

Table 3. Study participants.  
 
Our initial setup focuses on a broad spectrum of research questions: 
− Effort: Understand how much effort is required to achieve 

sufficient performance (speedup) on a GPU for a specific problem 
or class of problems. 

− Learning curve: How much time does it take to train novices in 
the new programming models? What kind of background 
experience or approach is beneficial? 

− Defects: What are commonly made mistakes by novices and 
experts? How do you avoid them? How do these defects compare 
with defects made in MPI? 

− Workflow: What is the best way to achieve a correct fast working 
GPU code as quickly as possible? 

 
In contrast to the single programmer problems that we have been 
studying in controlled classroom experiments in the HPC domain, we 
are now applying our toolset to several active development processes 
with multiple programmers. We capture, visualize, and analyze using 
following data probes:  

• Program compilation data: During each compile we capture 
timestamps of the compile information if the compile has been 
successful or if it failed any information about the compiled 
sources including the source code.  

• Program run data: Each program executed including its 
timestamp and shell-level command used to run the program is 
captured.  

• Shell commands: All shell commands entered during the 
development are captured. Calls like the invocation of make, the 
performance measurement with time and gprof give clues to the 
programmer’s current activity. 

• Background Questionnaire: In the beginning of the study we 
hand out general questionnaires that provides us with general 
information about each individual subject. Questions include 
information about their background and experience in software 
development and parallel computing. We also asked for their 
personal goals and reasons to learn this new technology. 

• Daily Diary: We asked the users to provide us with daily reports of 
their programming activities. 

• Interviews: In some cases we invited programmers for interviews 
to describe their current work and latest experiences. 

 
As an example, we give a sample analysis of code developed by a GPU 
novice. The problem the subject addressed was a port of an existing 
component in FORTRAN to a GPU. To understand the process the 
reader must know that the current programming model implemented for 
an NIVDIA GPU (i.e., CUDA) is based on the C language. Therefore 
the subject was forced to either rewrite his code in C or to use an 
additional third party library to perform GPU calls from the FORTRAN 
code. He decided for the latter since such a library was already 
developed at the University of Maryland. 
 
It took the subject six days to finish the task. Surprisingly our analysis 
shows that most of the time (the first three days) he was dealing with 
issues of understanding the library calls and getting an already existing 
FORTRAN template code to run on his machine. After overcoming 
these issues it took him only three hours on day four to make the 
necessary changes to his code, with some additional time on the last two 
days to measure performance. (See Figs. 5 and 6) Our analysis results 
were later verified by interviewing the participant.  
 
The NVIDIA GPU has its own high-speed shared memory, instruction 
set, controllers and several processors (with associated small local 
memory). The graphics processor can be considered as a compute 
device that is capable of efficiently executing data parallel 
computations, where the same program is executed on many data 
elements in parallel. The 8800GTX processor we use has 128 stream 
processors that are able to access 768 MB of onboard DRAM. The 
processors are arranged as 16 independent multiprocessors that are 
composed of 8 processor units, which share 16 kB of local shared 
memory. Programs executing on the stream processors are called 
threads and can access the device’s DRAM and on-chip memory 
through the following read-write memory: local 32-bit registers per 
processor, and a parallel data cache; read-only constant cache that is 
shared by all the processors; and a read-only texture cache that is shared 
by all the processors and speeds up reads from the texture memory 
space. To achieve high performance, one must understand the 
limitations and capabilities of this architecture. 
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Our prototype GPU study is the Particle in Cell (PIC) problem. This 
involves numerical simulation of particles with Coulomb forces and 
their interaction (movement) in space. Space is divided in cells or boxes. 
Different abstraction levels and parameters are used for different 
physics with the same basic algorithm. The common goals are to port 
existing code to GPU, build new GPU code from scratch, create PIC 
library to implement code for own physics need as fast as possible (with 
best performance achievable). 
 
Since the fall of 2007 we have been collecting experience forms from 
each developer, daily effort forms on activities worked on, and semi-
structured interviews.  Our experiment manager collects snapshots of all 
code developed each time the compiler is invoked. 
 
Although similar to HPC programming, GPU programming has its own 
characteristics. We are developing a separate bug base to reflect the 
unique characteristics of GPU programming. 
 
4. CONCLUSIONS 
 
At present our GPU work is only beginning, but we believe there are 
great similarities between HPC programming using traditional 
supercomputers and this new generation of graphics processors. After 
we complete our initial “shakedown” test of the PIC port, we intend to 
tackle the larger MHD problem given in Section 2 of this paper. This 
work is still preliminary, but we think it will lead to relevant insights in 
the months ahead. 
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Fig. 5. CodeVizard output. Each vertical line is a compile, and each mark on line represents a component touched by that compile. 
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Fig. 6. Six days of development needed to port component. (Each day is represented by alternating gray and black bands on the X-axis.) 


