
IBM Research | CUE | Social Computing Group

10 May 2008 © 2008 IBM Corporation

Towards Applying Complexity Metrics to
Measure Programmer Productivity in HPC

Catalina Danis, John C Thomas, John T Richards, Cal

Swart, Jonathan Brezin, Christine Halverson, Rachel

Bellamy, Peter Malkin

Social Computing Grp. & Web Technologies Grp.,

IBM T.J. Watson Research Center

Social Computing Group

Social Computing at IBM | © 2008 IBM Corporation2

My agenda

 Setting the context

 Measuring the productivity of HPC programmers

 Introducing the “Complexity Metrics” method

 Overview

 CM in the context of IBM’s PERCS measurement approach

 Sources of data for productivity measurement

 The Complexity Metrics method

 What does it consist in?

 How we apply it

 Some future directions

Social Computing Group

Social Computing at IBM | © 2008 IBM Corporation3

Setting the context: Measuring productivity of HPC
programmers

 Our task is to evaluate the productivity impact (gain, hopefully!) of

programmer tools IBM is developing for the DARPA HPCS program

 Must address the large scale of (many) HPC codes

 but also capture events at detailed task level in order to evaluate the impact of

tools IBM is developing (e.g.,: IDE, barrier analysis tools, X10 language)

 Productivity assessment is known to be hard

 Fallback on lines of code, though 180+ others have been proposed

 Strategy of the “Complexity Metrics” method

 Focus on brief routine tasks that in combination constitute “writing code” (e..g.,

starting a new software project, getting help on a language feature while writing

code, kicking off a performance analysis)

 Measure programmer behavior doing such tasks using new and old tools

 Build up a picture of overall productivity by drawing on characterizations of task,

problem and user types in the HPC domain generated through other means

Social Computing Group

Social Computing at IBM | © 2008 IBM Corporation4

Other data sources for HPC programmer behavior

 Empirical measurements of programming based studies of

programming using “integrated methodology” (i.e.,automatic

instrumentation supplemented with human observation)

 Generates data on what steps programmers follow to complete a task,

frequency with which programmers of particular skill level do a

particular task, task error frequencies�

 Field work consisting of interviews with and observations of HPC

programmers

 Cross-validates integrated methodology findings

 Surveys at “Mission Partner” work sites and other labs

 Enables us to characterize the skill level and problem distribution in

various labs

Social Computing Group

Social Computing at IBM | © 2008 IBM Corporation5

Introducing the “Complexity Metrics” method

 Overview

 An analytic, not empirical approach: We refer to it as a “modeling” approach

 Focus in on “routine” tasks: Characterizable by predictable sequences of

actions (e.g., “starting a new software project”, “interacting with

documentation while programming”, using a barrier analysis tool to balance

synchronization constructs, but not “writing new code”)

 Define “representative” manner of doing task, based on empirical work

 Define an “ideal” programmer with particular error profile: expert, novice

 Draws on empirical findings in Cognitive Psychology to argue that various

dimensions are important for characterizing the difficulty of task completion

 Asserts that complexity is inversely correlated with productivity

 We leverage IBM’s other PERCS empirical measurement approaches to

determine weight assignments to calculate overall productivity impact for

programmers

Social Computing Group

Social Computing at IBM | © 2008 IBM Corporation6

The Complexity Metrics method

 Count three elements in human task performance:

 Number of actions to complete a task, with an action defined to be:

 CLI: A command with all its parameters

 GUI: A dialogue box

 “Working Memory Load”: Number of “data items” supplied by the programmer and
possibly retained: e.g., command name and its arguments, name of a file to open,
name of function for which seeking help, directory location where source code
may be found

 And the number of “context switches”: moving between applications

 Rationale for asserting that these dimensions impact complexity & therefore
productivity is based on research findings in Cognitive Psychology

 Steps generally increase elapsed, chance of errors and opportunities for
interruptions (which add time for recovery of state)

 Retrieval of items from working memory takes longer the more items in memory�

 Context switching requires the use of different conventions and therefore requires
time and mental effort to orient to the new context (which may cause increases in
time and probability of error)

Social Computing Group

Social Computing at IBM | © 2008 IBM Corporation7

Some future directions

 Putting the method on better scientific footing

 We’ve made simplifying assumptions (all steps are equal; all memory items are of

equal difficulty; all context shifts are equal; selecting single path for a task from

many that are possible) in order to make the method objective and to enable us to

start developing some experience in using it

 Planning on doing targeted empirical work to define what is a step for users with

different levels of expertise; also beginning have frequency data available from

empirical studies for task composition

 Extending applicability of method beyond routine work

 Routine work is -- well -- routine!

 (also hard to show a 13x improvement)

 Impact of difficulty of routine work on more cognitively demanding tasks: Is there

a carryover effect of making the routine less complex?�

Social Computing Group

Social Computing at IBM | © 2008 IBM Corporation8

Conclusions

 It’s a start!

 Getting experience applying it helps us see where we need to extend it

 Helps us to identify where our tools have difficulties -- want to

eliminate “accidental” complexity

 In combination with other measures can speak to important aspects

of programming behavior from low level use of tools through overall

productivity

