
Slide-1

SECSE

University of Maryland

Large Efficient Table-Top

Teraflop Computing

Victor. Basili, Thiago Craveiro, Daniela Cruzes,

Kate Despain, Bill Dorland, Lorin Hochstein*,

Nico Zazworka, and Marvin Zelkowitz

University of Maryland in College Park

and

(* University of Nebraska, Lincoln)

http://www.umd.edu/

Slide-2

SECSE

University of Maryland

Scientific Computing

• Problem: How to increase computational power for solving

complex scientific problems?

• Solutions:

– Increase speed of processing unit

– If not powerful enough, build networks of processors

(Traditional approach in building supercomputers –

thousands of communicating processors)

• Expensive to build

• Expensive to use - Uses lots of power for computing and

cooling

– Alternative – Add inexpensive processors to current

desktop machines to increase computational power.

• Intel – Multicore processors

• Use graphics processing units as general purpose

computers (GPGPU)

This is the solution to be discussed today

http://www.umd.edu/

Slide-3

SECSE

University of Maryland

Productivity measures

• Related question: How effectively can we program these

machines?

– Traditionally the speed of the machine was measured in

FLOPS (Floating Point Operations Per Second) on specific

benchmark programs

• Real programs rarely achieved those numbers

• Often only 10-20% of peak performance

– We have been studying programmer productivity in the

High Performance Computing (HPC) domain as part of the

DARPA High Productivity Computer System (HPCS)

program from 2004-8 as a companion measure to machine

performance

– Can we apply those techniques to the problems of

measuring productivity in the GPGPU domain.

http://www.umd.edu/

Slide-4

SECSE

University of Maryland

Format for rest of talk

• Review aspects of our work on programmer productivity from

the DARPA HPCS program

• Introduction to the GPGPU problem

• Initial work on this issue and some thoughts on how we intend to

proceed

http://www.umd.edu/

Slide-5

SECSE

University of Maryland

HPCS Areas of Study

DefectsProcess flowEffort

ToolsPerformance
Programming

models

Environment/Hardware

Users/Developers

Cost & benefit, relationships, context variables, predictive models, tradeoffs

http://www.umd.edu/

Slide-6

SECSE

University of Maryland

Overall research process

• What: Performed several studies of programmers building HPC

programs in various environments

– Replicated studies with graduate students at various

universities on a set of standardized programs

– In-depth observational studies of a few individuals to

understand their behavior in solving HPC problems

– Interviews with developers on their experiences in building

HPC codes

• How: Developed a series of tools for collecting development

data

– Effort data for programmers

– Source files, edits, and test runs

– System commands and execution times

http://www.umd.edu/

Slide-7

SECSE

University of Maryland

UCSB

3 studies

USC

5 studies

UCSD

1 study

MIT

3 studies

UMD

11 studies

Mississippi State

2 studies

U Utah

ASC-Alliance

Iowa State

1 study

CalTech

ASC-Alliance

UIUC

ASC-Alliance

U Chicago

ASC-Alliance
Stanford U

ASC-Alliance

U Hawaii

1 study

SDSC

1 study

Studies conducted

http://www.umd.edu/

Slide-8

SECSE

University of Maryland

Sample Results: Characterizing novices

(graduate students in classroom assignments)

• OpenMP saves 35-75% of effort vs. MPI on most

problems

• Experience with problem reduces effort, but effect of

programming model is greater than effect of

experience

• When performance is the goal:

– Experts and students spend the same amount of

time

– Experts get significantly better performance

• No correlation between effort and performance

http://www.umd.edu/

Slide-9

SECSE

University of Maryland

Results: Understanding workflow

(Observational study)

Observation

Hypothesis

Truth

(Interview)

A series of failed and successful

Compile cycles with no runs

New code is being added and

Compile Time defects being fixed

Hypotheses were validated.

A series of failed and

successful Compile-

Run cycles

A series of successful

Compile and failed

Run cycles

Run Time defects being

fixed

0

1

2

3

4

5

0
:0

0

0
:1

1

0
:2

4

1
:3

4

1
:4

9

2
:2

4

2
:4

4

3
:1

4

3
:2

0

3
:4

2

4
:0

0

4
:1

4

4
:5

7

5
:1

1

5
:1

9

5
:3

0

5
:4

8

5
:5

2

6
:0

7

6
:1

5

6
:2

4

6
:3

1

6
:3

6

6
:4

6

7
:2

0

7
:2

6

7
:4

4

7
:5

0

8
:0

4

8
:1

0

8
:1

6

8
:2

5

8
:3

0

8
:3

5

Elapsed Time

Failed edit-compile

Failed compile-run cycle

Successful edit-compile

Successful compile-run cycle

Developer unable to fix

defects

http://www.umd.edu/

Slide-10

SECSE

University of Maryland

CAPTURE
life.c

life.c
LOC:
654

PROCESS ANALYZE DERIVE
openMP

>

MPI

Resulting Infrastructure Tools & Packages

For the hpcs studies we built a collection of tools

capture tools:

help to gather

data from study

participants and

join this data in

our common

data source - a

relational DB

processing

tools:

calculate / post

process data in

the DB to

retrieve non

captured and

higher level data

analyze tools:

provide views

on the DB in

order to support

the validation of

hypotheses and

to gain new

insights

knowledge

bases: present

the derived

knowledge of

analyze

processes

Information available at: http://hpcs.cs.umd.edu

http://www.umd.edu/

Slide-11

SECSE

University of Maryland

GPGPU Solution

• High-end PCs use separate display processors (GPUs or

graphics processing units) for manipulating data on the display

for computational complex applications (e.g., video games)

• GPUs can be separately programmed for many tasks

• Speeds for GPUs are increasing faster

than general CPU speeds

Question 1: Can GPUs be used to

program solutions in the HPC domain?

– Can get today GPU boards with

512 or more GPUs

Question 2: Can we apply our approach in the HPCS domain to

study GPGPU programming as well?

0

50

100

150

200

250

300

350

2001 2002 2003 2004 2005 2006

Year

G
F

L
O

P
S Intel

ATI

NVIDIA

A group at the University of Maryland was porting an application

from a multiprocessing system to a GPGPU system. This provided

an environment for testing these ideas.

http://www.umd.edu/

Slide-12

SECSE

University of Maryland

Initial issues under study

• Domain knowledge (how to solve the underlying problem

in physics):

– What distinguishes porting to a cluster from porting to a

GPU?

– What tools can aid scientists unfamiliar with GPUs

when porting?

– What tools help or are essential for software engineers

using that methodology?

• Methodology understanding (how to study productivity

issues):

– What kind of methodology do you need to examine an

on-going port?

– How important are interviews for analysis?

http://www.umd.edu/

Slide-13

SECSE

University of Maryland

Y-axis: folders and files
colored by file type

X-axis: time line with hours
in upper and days in bottom
row

File versions with lifelines:
captured at compile time.
Black borders indicate that
the file has been changed to
the previous version.
Lifelines show first compile of
this file

Compiles: green
lines for successful
and red for failed
compiles

Shell events: runs (blue),
make (magenta), and
others (black)

CodeVizard – Software Evolution Visualization

http://www.umd.edu/

Slide-14

SECSE

University of Maryland

Preliminary GPU study

(One week-port of rMHD code)

Observation

Hypothesis

Truth

(Interview)

3 work

sessions

In last:

New files

In first 2: No
makes but

runs

First two phases: trying something new

Third phase: getting first runs / earlier problems
solved

After meetings with colleagues he got the
template code to run in the third phase.

Adjustments were still necessary.

High work

density

Compiles

Makes

And runs

Adding new component, dense and
successful work points to error free

development

The subject ported his code to GPU in little
time.

New files,

focus on

one

http://www.umd.edu/

Slide-15

SECSE

University of Maryland

Scaling up: The weekly cycle steps

1. Process collected data – prior to interview

2. Pre-analysis of data – immediately before interview

3. Interview (semi-structured) developer

4. Post-analysis of data and interview

http://www.umd.edu/

Slide-16

SECSE

University of Maryland

Question on Methodology

• Interviews in a longer study while it is in process

instead of conducting them retrospectively?

– Hypothesis: A week is a short enough time for

the subject to remember details

– Hypothesis: Regular code inspections

(possible with tools) and interview techniques

are effective necessary

• Experiences from each week can help improve

both the methodology and the domain knowledge

gain for the next one

http://www.umd.edu/

Slide-17

SECSE

University of Maryland

Second GPU Case Study

• Characteristics:

– Graduate student porting serial 2D MHD Fortran

code to 3D on a GPU

– Original used OpenMP. OpenMP removed from

code and CUDA commands added

– Used DevObject Fortran library; some work still

had to be done in CUDA (kernels)

– Parallelization of derivative and FFT calculation

suspected to bring most speedup

http://www.umd.edu/

Slide-18

SECSE

University of Maryland

Performance (derivatives)

• Finding the derivative 1000 times for a 1024 by 1024 matrix using:

Pointwise Matrix-Matrix multiplication takes: 0.9726562 secs

Pointwise Vector-Matrix multiplication takes: 0.8242188 secs

Scalar Constant cache + GPU integer math-Matrix mult. takes: 11.7148438 secs

Scalar in Shared memory + GPU integer math-Matrix mult. takes: 1.7734375 secs

• Finding the derivative 1000 times for a 512 by 512 matrix using:

Pointwise Matrix-Matrix multiplication takes: 0.2812500 secs

Pointwise Vector-Matrix multiplication takes: 0.2890625 secs

Scalar Constant cache + GPU integer math-Matrix mult. takes: 2.9765625 secs

Scalar in Shared memory + GPU integer math-Matrix mult. takes: 0.5117188 secs

• Finding the derivative 1000 times for a 256 by 256 matrix using:

Pointwise Matrix-Matrix multiplication takes: 0.1093750 secs

Pointwise Vector-Matrix multiplication takes: 0.1601562 secs

Scalar Constant cache + GPU integer math-Matrix mult. takes: 0.8085938 secs

Scalar in Shared memory + GPU integer math-Matrix mult. takes: 0.1914062 secs

http://www.umd.edu/

Slide-19

SECSE

University of Maryland

Preliminary results: Domain knowledge

• Most defects are related to environment (CUDA /

DevObject), some to memory (shared memory usage)

• Workflow:

– A lot of prototyping and testing/benchmarking before

creating final code

– Parallelization of serial 2D version first, then addition

and parallelization of 3D, one attempt using parallel

“scan” primitive for total energy sum calculation, then

final physics code

– Reuse of code consisted of a big increment in one file +

small increment in others

– Most of the time spent in understanding and adapting

environment (CUDA / DevObject / reused code)

http://www.umd.edu/

Slide-20

SECSE

University of Maryland

• Defects: Hard to recognize patterns judging from
syntax errors alone

• Interviews:

– Structured interview questions about goal and
priority changes (most occurring after meetings)
turn out to be very important

– Unstructured questions hard to formulate without
clarification / screenshots, require a lot of
preparation

– Also they are not easy to answer in a few words,
so the subject also needs a long time to explain

– Interview too short to cover more than one aspect
per week (defects, effort, workflow,…)

Preliminary results: Methodology

http://www.umd.edu/

Slide-21

SECSE

University of Maryland

Conclusions

• Still at preliminary stage for understanding
effectiveness of GPGPU programming

• Methodology understanding:

– Need Improvement of tools (system view/code
view annotation in CodeVizard)

– Need larger-scale and classroom experiments on
defects, effort & performance

– Need refinement of interview templates for effort
and defects and creation of new ones for other
HPC research goals

Goal: Better understanding of the issues in
programming GPUs as a substitute for HPC
machines.

http://www.umd.edu/

