
The University of Chicago	

Flash Center for Computational
Science

SE-CSE May 18, 2013

The software development process of
FLASH, a Multiphysics Simulation Code

Anshu Dubey,Katie Antypas,Alan Calder,Bruce Fryxell,
Don Lamb,Paul Ricker,Lynn Reid,Katherine Riley,

Robert Rosner,Andrew Siegel,Francis Timmes,
Natalia Vladimirova,Klaus Weide,

FLASH’s Beginnings

❑ ASCI Center with delivery of a multi-physics code as a
stated objective

❑  Intent to develop a single code usable for multiple
applications
❑ Thermonuclear runaways

❑ Compressible reactive hydrodynamics
❑ Specialized equation of state
❑ Nuclear burning networks

❑ AMR because of different scales in the physics
❑  Intent to release the code publicly
❑ Prometheus, PARAMESH and other research codes

smashed together into one code

Version 1

❑ The Good
❑ Desire to use the same code for many different

applications necessitated some thought to infrastructure
and architecture

❑ Concept of alternative implementations, with a script for
plugging different EOS – the setup tool

❑ Beginning of inheriting directory structure
❑ First release FLASH 1.6

❑ The Bad
❑ F77 style of programming; Common blocks for data

sharing
❑  Inconsistent data structures, divergent coding practices

and no coding standards

Version 1

❑ And the ugly
❑  Two camps

❑ Camp 1 – do it right, think about design and then build
❑ Camp 2 – do it right, enable science as soon as possible

❑  For a while there were parallel efforts
❑ The two camps did not communicate

❑  The resources were not enough for parallel efforts
❑ The science centric view won out
❑ Till today the scientists and developers involved only in that

phase view only that as the right model

❑  The saving grace – among the science centric developers
there were some who were passionate about the open
source model, and had a great deal of influence

Version 2 : Data Inventory

❑ Address the worst of the bad in version 1
❑ Eliminate common blocks
❑  Inventory the data
❑  Identify different variable types and classify them
❑ Resulted in centralized database

❑ Enhance the good
❑ Setup tool got enhanced
❑ Config files got formalized

❑ New in this version – testing got formalized
❑ Test-suite version 1
❑ Run on multiple platforms

❑ Not much else changed in the architecture

Central Database Disadvantages

❑ Navigating the source tree became more confusing
and Config file dependencies became more verbose

❑ No possibility of data scoping; every data item was
equally accessible to every routine in the code

❑ When parsing a function, one could not tell the source
of data

❑ Lateral dependencies were further hidden
❑ Overhead of database querying slowed the code by

about 10-15%
❑ The queries caused huge amount of code replication

and source files became ugly
❑ Encapsulation became nearly impossible

Version 3: the Current Architecture

❑ Kept inheriting directory structure, configuration and
customization mechanisms from earlier versions

❑ Defined naming conventions
❑  Differentiate between namespace and organizational directories
❑  Differentiate between API and non-API functions in a unit
❑  Prefixes indicating the source and scope of data items

❑  Formalized the unit architecture
❑  Defined API for each unit with null implementation at the top level

❑ Resolved data ownership and scope
❑ Resolved lateral dependencies for encapsulation
❑  Introduced subunits and built-in unit test framework

Version Transitions – 1 to 2

❑ The bias at the time – keep the scientists in control
❑ Keep the development and production branches

synchronized
❑ Enforced backward compatibility in the interfaces
❑ Precluded needed deep changes
❑ Hugely increased developer effort
❑ High barrier to entry for a new developer

❑ Did not get adopted for production in the center for
more than two years
❑ Development continued in FLASH1.6, and so had to be

brought simultaneously into FLASH2 too.
❑ Database caused performance hit and IPA could not be

done, so slower

Version Transitions 2 to 3

❑ Controlled by the developers
❑ Sufficient time and resources made available to design

and prototype
❑ No attempt at backward compatibility
❑ No attempt to keep development synchronized with

production
❑ All focus on a forward looking modular, extensible and

maintainable code

Two very important factors to remember:
The scientists had a robust enough production code

The developers had internalized the vagaries of the solvers

The Methodology

❑ Build the framework in isolation from the production code
base

❑  Infrastructure units first implemented with a homegrown
Uniform Grid.
❑  Helped define the API and data ownership

❑ Unit tests for infrastructure built before any physics was
brought over

❑ Hydro and ideal gas EOS were next with one application
❑ Next was AMR: the application and the IO implementation

were verified
❑  Test-suite was started on multiple platforms with various

configurations (1/2/3D, UG/PARAMESH, HDF5/PnetCDF)
❑  This took about a year and a half, the framework was very

well tested and robust by this time

The Methodology Continued …

❑  In the next stage the mature solvers (ones that were unlikely to
have incremental changes) were transitioned to the code
❑  Once a code unit became designated for FLASH3, no users could

make a change to that unit in FLASH2 without consulting the code
group.

❑  The next transition was the simplest production application (with
minimal amount of physics)

❑  Scientists were in the loop for verification and in prioritizing the
units to be transitioned at this stage

❑  FLASH3 was in production in the Center long before its official
3.0 release
❑  The ugly had been addressed: the science centric view had given

way to a more balanced one; took tremendous effort on the part of
the center’s leaders

❑  More mutual trust and respect
❑  More reliable code; unit tests provided more confidence, and it was

easier to add capabilities

Version 4

❑ Did not need any change in the architecture
❑ Primarily a capabilities addition exercise
❑ Mesh replication was easily introduced for multigroup

radiation
❑ Expanded to other communities such as fluid-structure

interaction because of existing Lagrangian framework
and elliptic solver

❑ Has Chombo as an alternative mesh package, but for
hydro only applications

Interdisciplinary Interactions

Prioritization
❑ whether good long term design or meet short term science

objectives
❑ Both have their place
❑  Initial stages should be driven by science objectives

❑ Too early for long term software design
❑ Quick and dirty solutions with an eye to learning about code

components and their interplay
❑ Once there is useable code, long term planning and design

should occur
❑ Willingness to make wholesale changes to the code at least

once is necessary
❑ At no stage should one lose sight of science objectives

Interdisciplinary Interactions

Partnership model
❑ Science users who recognize the code as a research

instrument that needs its own research
❑ Even better if they are interested in the code

❑ Flash early scientists were
❑ Developers and computer scientists interested in a product

and the science being done with the code
❑ Helps to have people with multidisciplinary training

❑ Comparable resources and autonomy for code group
❑ And recognition of their intellectual contribution to scientific

discovery
❑ Careful balance between long term and short term

objectives

Lessons Learned

❑ Public Releases – every 8-10 months – forces discipline
❑  Brings the code up to coding standards
❑  Reconciles and refreshes the test suite

❑ Documentation – transient developer population
❑  User support documentation
❑  Extensive inline documentation

❑ Backward compatibility is overrated
❑ Uncluttered infrastructure is the best
❑ Supporting users is good, letting users drive the capability

addition is even better
❑  Testing the code on multiple platforms is indispensable
❑ Allowing branches to diverge is a really bad idea

Some useful links

❑ http://flash.uchicago.edu/site/flashcode
❑ http://flash.uchicago.edu/site/flashcode/user_support/
❑ http://flash.uchicago.edu/site/publications/

flash_pubs.shtml
❑ http://flash.uchicago.edu/site/testsuite/home.py

