3@ Flash Center for Computational
Q} Science

The software development process of
FLASH, a Multiphysics Simulation Code

Anshu Dubey,Katie Antypas,Alan Calder,Bruce Fryxell,
Don Lamb,Paul Ricker,Lynn Reid,Katherine Riley,
Robert Rosner,Andrew Siegel,Francis Timmes,
Natalia Vladimirova,Klaus Weide,

SE-CSE May 18, 2013

BERKELEY LAB {2) ENERGY

LAWRENCE BERKELEY NATIONAL LABORATORY




%} FLASH's Beginnings

- ASCI Center with delivery of a multi-physics code as a
stated objective

 Intent to develop a single code usable for multiple
applications
a Thermonuclear runaways
2 Compressible reactive hydrodynamics

2 Specialized equation of state
2 Nuclear burning networks

d AMR because of different scales in the physics
- Intent to release the code publicly

J Prometheus, PARAMESH and other research codes
smashed together into one code



Version 1

J The Good

- Desire to use the same code for many different
applications necessitated some thought to infrastructure
and architecture

2 Concept of alternative implementations, with a script for
plugging different EOS — the setup tool

d Beginning of inheriting directory structure
d First release FLASH 1.6

J The Bad

a F77 style of programming; Common blocks for data
sharing

2 Inconsistent data structures, divergent coding practices
and no coding standards



%} Version 1

- And the ugly
a Two camps
2 Camp 1 —do it right, think about design and then build
2 Camp 2 — do it right, enable science as soon as possible
2 For a while there were parallel efforts
2 The two camps did not communicate
2 The resources were not enough for parallel efforts
2 The science centric view won out
a Till today the scientists and developers involved only in that
phase view only that as the right model
J The saving grace — among the science centric developers
there were some who were passionate about the open

source model, and had a great deal of influence




£

Version 2 : Data Inventory

- Address the worst of the bad in version 1
2 Eliminate common blocks
2 Inventory the data
2 Identify different variable types and classify them
- Resulted in centralized database
- Enhance the good
a Setup tool got enhanced
a Config files got formalized
- New in this version — testing got formalized
- Test-suite version 1
2 Run on multiple platforms

- Not much else changed in the architecture



%} Central Database Disadvantages

- Navigating the source tree became more confusing
and Config file dependencies became more verbose

- No possibility of data scoping; every data item was
equally accessible to every routine in the code

- When parsing a function, one could not tell the source
of data

- Lateral dependencies were further hidden

- Overhead of database querying slowed the code by
about 10-15%

- The queries caused huge amount of code replication
and source files became ugly

- Encapsulation became nearly impossible



%} Version 3: the Current Architecture

J Kept inheriting directory structure, configuration and
customization mechanisms from earlier versions

J Defined naming conventions
a1 Differentiate between namespace and organizational directories
A Differentiate between APl and non-API functions in a unit
a Prefixes indicating the source and scope of data items

- Formalized the unit architecture
d Defined API for each unit with null implementation at the top level

- Resolved data ownership and scope
- Resolved lateral dependencies for encapsulation
 Introduced subunits and built-in unit test framework



%} Version Transitions — 1 to 2

- The bias at the time — keep the scientists in control

- Keep the development and production branches
synchronized
a Enforced backward compatibility in the interfaces
d Precluded needed deep changes
a Hugely increased developer effort
d High barrier to entry for a new developer

- Did not get adopted for production in the center for
more than two years

a Development continued in FLASH1.6, and so had to be
brought simultaneously into FLASH2 too.

2 Database caused performance hit and IPA could not be
done, so slower



Qi;“(\’) Version Transitions 2 to 3

- Controlled by the developers

 Sufficient time and resources made available to design
and prototype

- No attempt at backward compatibility

- No attempt to keep development synchronized with
production

- All focus on a forward looking modular, extensible and
maintainable code

Two very important factors to remember:

The scientists had a robust enough production code
The developers had internalized the vagaries of the solvers




The Methodology

- Build the framework in isolation from the production code
base

d Infrastructure units first implemented with a homegrown
Uniform Grid.

4 Helped define the APl and data ownership

- Unit tests for infrastructure built before any physics was
brought over

J Hydro and ideal gas EOS were next with one application

J Next was AMR: the application and the IO implementation
were verified

J Test-suite was started on multiple platforms with various
configurations (1/2/3D, UG/PARAMESH, HDF5/PnetCDF)

 This took about a year and a half, the framework was very
well tested and robust by this time



The Methodology Continued ...

In the next stage the mature solvers (ones that were unlikely to
have incremental changes) were transitioned to the code
a Once a code unit became designated for FLASHS3, no users could
make a change to that unit in FLASH2 without consulting the code
group.
The next transition was the simplest production application (with
minimal amount of physics)

Scientists were in the loop for verification and in prioritizing the
units to be transitioned at this stage

FLASH3 was in production in the Center long before its official
3.0 release

A The ugly had been addressed: the science centric view had given
way to a more balanced one; took tremendous effort on the part of
the center’s leaders

2 More mutual trust and respect

2 More reliable code; unit tests provided more confidence, and it was
easier to add capabilities



Version 4

- Did not need any change in the architecture
 Primarily a capabilities addition exercise

- Mesh replication was easily introduced for multigroup
radiation

J Expanded to other communities such as fluid-structure
interaction because of existing Lagrangian framework
and elliptic solver

J Has Chombo as an alternative mesh package, but for
hydro only applications



Interdisciplinary Interactions

Prioritization

- whether good long term design or meet short term science
objectives

2 Both have their place

2 Initial stages should be driven by science objectives
2 Too early for long term software design

2 Quick and dirty solutions with an eye to learning about code
components and their interplay

a Once there is useable code, long term planning and design
should occur

2 Willingness to make wholesale changes to the code at least
once is necessary

2 At no stage should one lose sight of science objectives



Interdisciplinary Interactions

Partnership model

- Science users who recognize the code as a research
iInstrument that needs its own research

d Even better if they are interested in the code
2 Flash early scientists were

a Developers and computer scientists interested in a product
and the science being done with the code

2 Helps to have people with multidisciplinary training

2 Comparable resources and autonomy for code group

2 And recognition of their intellectual contribution to scientific
discovery

a Careful balance between long term and short term
objectives



£

Lessons Learned

- Public Releases — every 8-10 months — forces discipline
a Brings the code up to coding standards
2 Reconciles and refreshes the test suite

J Documentation — transient developer population
 User support documentation
d Extensive inline documentation

- Backward compatibility is overrated
J Uncluttered infrastructure is the best

- Supporting users is good, letting users drive the capability
addition is even better

 Testing the code on multiple platforms is indispensable
- Allowing branches to diverge is a really bad idea



£

L

Some useful links




