
DSLs, DLA, DxT, and MDE 
in CSE 

Bryan Marker, Robert van de Geijn, Don Batory 
The University of Texas at Austin 

SECSE-­‐1	
  



I’M ASSUMING SOME CSE 
KNOWLEDGE, SO ASK 
QUESTIONS 

SECSE-­‐2	
  



Glossary 
•  DLA – dense linear algebra 

•  Often found at the bottom of a CSE software stack 
•  Often leads the way in programming models since it’s such an “easy” domain 
•  Has to be re-visited with every major architecture shift 

•  DSL – domain-specific language 
•  Enables experts to write algorithms at a level of abstraction that makes them 

effective in producing (hopefully) high-performance code 
•  Could just be an API provided by a library 

•  MDE – model driven engineering 
•  Models represent (software) systems 
•  Can start with an abstract design and iteratively add implementation details 
•  Encode knowledge about how to implement domain (software) components 

SECSE-­‐3	
  



The Problem 
•  Different DSLs are needed for each architecture 

•  GPU code won’t work well for shared-memory or distributed-memory or … 

•  When a new architecture comes out, experts must revisit all common domain 
operations, revisit all of their algorithms, and code them for the new target 

•  Experts are rare, so their time is valuable 
•  So much of what they do is rote development by applying their knowledge 

repeatedly 
•  Why are they doing it all by hand? 
•  Let’s automate this! 

SECSE-­‐4	
  



Design by Transformation 
•  Design by Transformation (DxT) for automatic program  

generation 
•  Encode domain algorithms as models / data flow graphs 

•  Nodes represent functionality 
•  An interface has no implementation details (works for any architecture) 
•  A primitive has an implementation in DSL code for the target architecture 

•  Start with a graph of all interfaces and end with a graph of all primitives 

•  Encode expert design knowledge as graph transformations 
•  Iteratively replace interfaces with implementations (refinement) 
•  The result is functional code 
•  Iteratively replace inefficiencies with better code (optimization) 
•  The result is high-performance code 

 

SECSE-­‐5	
  



DxT 
•  Basically, the system searches a space of implementation choices, just like an 

expert, but it does it automatically so an expert can relax 

•  Our prototype is called DxTer 
•  Input graph, get DSL code for particular target 

SECSE-­‐6	
  



DxTer
Input

algorithm
graph

Hardware
knowledge

Domain
transformations

Output
code

SECSE-­‐7	
  



DxT for DLA 
•  Automatically generating code for distributed memory 
•  Targeting Elemental library 

–  Modern (C++, object-oriented) replacement for ScaLAPACK 

•  In all cases, generated same or better than an expert  
•  Experts forget algorithms or optimizations 
•  Experts make coding errors 
•  DxTer does not 

•  Code runs significantly faster than ScaLAPACK 

SECSE-­‐8	
  



View as DAG 
Notice that this is hardware-agnostic 

SECSE-­‐9	
  



Transform with Implementations 

SECSE-­‐10	
  

LCHOLA11 A11'[MC,MR]→[*,*] [*,*]→[MC,MR]

DCHOL

DCHOLA11 A11'

LTRSM
A21 [MC,MR]→[VC,*]

[MC,MR]→ [*,*]
[VC,*]→[MC,MR]DTRSM A21' A21'

DTRSM

A22

DHERKLN [MC,MR]→[MC,*]

[MC,MR] →[MR,*]

LTriRK

DHERKLN

A11'

A21

A11'

A21'
A22'

A22

A21'

A22'

(a)

(b)

(c)A21' A21'



Transform to Optimize 

SECSE-­‐11	
  



WHO KNOWS OF THE 
BLAS? 

SECSE-­‐12	
  



SECSE-­‐13	
  

0	
  

2000	
  

4000	
  

6000	
  

8000	
  

10000	
  

12000	
  

14000	
  

16000	
  

18000	
  
Ge

m
m
	
  N
N
	
  

Ge
m
m
	
  N
T	
  

Ge
m
m
	
  T
N
	
  

Ge
m
m
	
  T
T	
  

Sy
m
m
	
  L
L	
  

Sy
m
m
	
  R
L	
  

Sy
m
m
	
  L
U
	
  

Sy
m
m
	
  R
U
	
  

Sy
r2
k	
  
LN

	
  

Sy
r2
k	
  
LT
	
  

Sy
r2
k	
  
U
N
	
  

Sy
r2
k	
  
U
T	
  

Sy
rk
	
  L
N
	
  

Sy
rk
	
  L
T	
  

Sy
rk
	
  U
N
	
  

Sy
rk
	
  U
T	
  

Tr
m
m
	
  L
LN

N
	
  

Tr
m
m
	
  R
LN

N
	
  

Tr
m
m
	
  L
LT
N
	
  

Tr
m
m
	
  L
U
N
N
	
  

Tr
sm

	
  L
LN

N
	
  

Tr
sm

	
  R
LN

N
	
  

Tr
sm

	
  L
LT
N
	
  

Tr
sm

	
  L
U
N
N
	
  

Pe
rf
or
m
an

ce
	
  (G

FL
O
PS
)	
  

BLAS3	
  Performance	
  on	
  BlueGene/P	
  

ScaLAPACK	
  
DxTer	
  

*8,192	
  cores	
  on	
  Argonne’s	
  Intrepid	
  machine	
  

2/3	
  of	
  peak	
  



Building Blocks 
•  The knowledge to generate that code forms a set of domain building blocks 

–  The BLAS are at the bottom of DLA software stacks 

•  More complicated algorithms use that knowledge 
•  When done by hand, it’s rote re-application of knowledge 
•  When done by DxTer, who cares? 

SECSE-­‐14	
  



Starting Graph 

SECSE-­‐15	
  

Gemm
NN

Trmm
Right

Trmm
Left

Hemm
Left

Her2k 
H

Axpy

TwoSided
Trmm

A00

A10

A20

A11

A21

L10

L11

Axpy
A10'

A00'

A11'

A20'

A21'



Final Implementation 

SECSE-­‐16	
  

A00

A10

A20

A11

A21

L10

L11

A10'

A00'

A11'

A20'

A21'

LHemm
Left

[MR,*]T→[*,VR]

[MC,MR]→ [*,*]

Y10Temp[*,VR]

[MC,MR]→[MR,*]T
[MC,MR]→[*,VR]

LAxpy

[*,VR]→[*,MC]

[*,VR]→[*,MR]

[*,VR]→[*,MC]
LTrr2k

H

LAxpy

[MC,MR]→ [*,*]

LTrmm
Right

LTrmm
Left [*,VR]→[MC,MR]

[MC,MR]→[MC,*]

LGemm
NT

LTwoSided
Trmm

[MC,*]→[VC,*] [VC,*]→[MC,MR]



2 4 6 8 10

x 10
4

0

5000

10000

15000

Problem size (x104)

P
e
rf

o
rm

a
n
ce

 (
G

F
L
O

P
S

)

Two−Sided Trmm on Intrepid

 

 

DxTer Two−sided Trmm Optimized
ScaLAPACK Two−sided Trmm

SECSE-­‐17	
  

2/3	
  of	
  peak	
  

*8,192	
  cores	
  on	
  Argonne’s	
  Intrepid	
  machine	
  



SECSE-­‐18	
  

2 4 6 8 10

x 10
4

0

5000

10000

15000

Problem size (x104)

P
e
rf

o
rm

a
n
ce

 (
G

F
L
O

P
S

)

Two−Sided Trmm on Intrepid

 

 

DxTer Two−sided Trmm Optimized

DxTer Two−sided Trmm Unoptimized
ScaLAPACK Two−sided Trmm

2/3	
  of	
  peak	
  

*8,192	
  cores	
  on	
  Argonne’s	
  Intrepid	
  machine	
  



SECSE-­‐19	
  

Gemm
NN

Trsm
Left

Trsm
Right Hemm

Right

Her2k 
N

Axpy

TwoSided
Trsm

A22

A10

A20

A11

A21

L21

L11

Axpy

A10'

A22'

A11'

A20'

A21'



How Can We Do This? 
•  Requires DEEP domain knowledge 

•  Without domain understanding, we can’t do what experts do 

•  Requires software layering 
•  Need to be able to abstract key domain ideas and functionality 
•  DSLs are great at hiding minutia of domain 
•  Enable people to focus on important decisions 
•  Enables us to encode important knowledge 

•  We’re not encoding knowledge for arbitrary C++ programs 

SECSE-­‐20	
  



Moving Forward 
•  Many CSE domains similarly have experts doing rote work 

•  Implementing similar (but sufficiently different) algorithms repeatedly for 
one architecture 

•  Re-implementing the same algorithms for a new hardware target 

SECSE-­‐21	
  



Moving Forward 
•  Let’s work towards encoding expert knowledge and automating the tedious part of 

the expert’s job 

•  Let’s work toward getting the human out of the software development cycle 
•  Better performing code 
•  More trustworthy code 
•  Faster development times 
•  More scientific approach to software engineering (encoding knowledge/

patterns of domain instead of resulting code) 

SECSE-­‐22	
  



Questions? 

bamarker@cs.utexas.edu 

SECSE-­‐23	
  


