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I’M ASSUMING SOME CSE 
KNOWLEDGE, SO ASK 
QUESTIONS 
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Glossary 
•  DLA – dense linear algebra 

•  Often found at the bottom of a CSE software stack 
•  Often leads the way in programming models since it’s such an “easy” domain 
•  Has to be re-visited with every major architecture shift 

•  DSL – domain-specific language 
•  Enables experts to write algorithms at a level of abstraction that makes them 

effective in producing (hopefully) high-performance code 
•  Could just be an API provided by a library 

•  MDE – model driven engineering 
•  Models represent (software) systems 
•  Can start with an abstract design and iteratively add implementation details 
•  Encode knowledge about how to implement domain (software) components 
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The Problem 
•  Different DSLs are needed for each architecture 

•  GPU code won’t work well for shared-memory or distributed-memory or … 

•  When a new architecture comes out, experts must revisit all common domain 
operations, revisit all of their algorithms, and code them for the new target 

•  Experts are rare, so their time is valuable 
•  So much of what they do is rote development by applying their knowledge 

repeatedly 
•  Why are they doing it all by hand? 
•  Let’s automate this! 
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Design by Transformation 
•  Design by Transformation (DxT) for automatic program  

generation 
•  Encode domain algorithms as models / data flow graphs 

•  Nodes represent functionality 
•  An interface has no implementation details (works for any architecture) 
•  A primitive has an implementation in DSL code for the target architecture 

•  Start with a graph of all interfaces and end with a graph of all primitives 

•  Encode expert design knowledge as graph transformations 
•  Iteratively replace interfaces with implementations (refinement) 
•  The result is functional code 
•  Iteratively replace inefficiencies with better code (optimization) 
•  The result is high-performance code 
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DxT 
•  Basically, the system searches a space of implementation choices, just like an 

expert, but it does it automatically so an expert can relax 

•  Our prototype is called DxTer 
•  Input graph, get DSL code for particular target 
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DxT for DLA 
•  Automatically generating code for distributed memory 
•  Targeting Elemental library 

–  Modern (C++, object-oriented) replacement for ScaLAPACK 

•  In all cases, generated same or better than an expert  
•  Experts forget algorithms or optimizations 
•  Experts make coding errors 
•  DxTer does not 

•  Code runs significantly faster than ScaLAPACK 
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View as DAG 
Notice that this is hardware-agnostic 
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Transform with Implementations 
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Transform to Optimize 
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WHO KNOWS OF THE 
BLAS? 
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Building Blocks 
•  The knowledge to generate that code forms a set of domain building blocks 

–  The BLAS are at the bottom of DLA software stacks 

•  More complicated algorithms use that knowledge 
•  When done by hand, it’s rote re-application of knowledge 
•  When done by DxTer, who cares? 
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Starting Graph 
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Final Implementation 
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How Can We Do This? 
•  Requires DEEP domain knowledge 

•  Without domain understanding, we can’t do what experts do 

•  Requires software layering 
•  Need to be able to abstract key domain ideas and functionality 
•  DSLs are great at hiding minutia of domain 
•  Enable people to focus on important decisions 
•  Enables us to encode important knowledge 

•  We’re not encoding knowledge for arbitrary C++ programs 
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Moving Forward 
•  Many CSE domains similarly have experts doing rote work 

•  Implementing similar (but sufficiently different) algorithms repeatedly for 
one architecture 

•  Re-implementing the same algorithms for a new hardware target 
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Moving Forward 
•  Let’s work towards encoding expert knowledge and automating the tedious part of 

the expert’s job 

•  Let’s work toward getting the human out of the software development cycle 
•  Better performing code 
•  More trustworthy code 
•  Faster development times 
•  More scientific approach to software engineering (encoding knowledge/

patterns of domain instead of resulting code) 
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Questions? 

bamarker@cs.utexas.edu 
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