DSLs, DLA, DxT, and MDE
in CSE

Bryan Marker, Robert van de Geijn, Don Batory
The University of Texas at Austin

DXT SECSE-1

I'M ASSUMING SOME CSE
KNOWLEDGE, SO ASK
QUESTIONS

Dsc]

Glossary

* DLA-dense linear algebra
» QOften found at the bottom of a CSE software stack

« Often leads the way in programming models since it’s such an “easy” domain
* Has to be re-visited with every major architecture shift
« DSL - domain-specific language
 Enables experts to write algorithms at a level of abstraction that makes them
effective in producing (hopefully) high-performance code

 Could just be an API provided by a library
* MDE - model driven engineering
» Models represent (software) systems
« Can start with an abstract design and iteratively add implementation details
 Encode knowledge about how to implement domain (software) components

Dsc]

The Problem

Different DSLs are needed for each architecture
» GPU code won't work well for shared-memory or distributed-memory or ...

When a new architecture comes out, experts must revisit all common domain
operations, revisit all of their algorithms, and code them for the new target

Experts are rare, so their time is valuable

 So much of what they do is rote development by applying their knowledge
repeatedly

» Why are they doing it all by hand?
* Let's automate this!

Dsc]

Design by Transformation

q
Design by Transformation (DxT) for automatic program
generation
Encode domain algorithms as models / data flow graphs

Nodes represent functionality
* An interface has no implementation details (works for any architecture)
 Aprimitive has an implementation in DSL code for the target architecture
Start with a graph of all interfaces and end with a graph of all primitives

Encode expert design knowledge as graph transformations
* |teratively replace interfaces with implementations (refinement)
 The result is functional code
* |teratively replace inefficiencies with better code (optimization)
 The result is high-performance code

Dsc]

DxT

Basically, the system searches a space of implementation choices, just like an
expert, but it does it automatically so an expert can relax

Our prototype is called DxTer
* Input graph, get DSL code for particular target

'>><T SECSE-6

Input
algorithm > DxTer . Output
code
graph
Hardware Domain
knowledge transformations

[>><T SECSE-7

DxT for DLA

Automatically generating code for distributed memory
Targeting Elemental library
— Modern (C++, object-oriented) replacement for ScaLAPACK

In all cases, generated same or better than an expert
« Experts forget algorithms or optimizations
 Experts make coding errors

» DxTer does not

Code runs significantly faster than ScaLAPACK

Dsc]

View as DAG

Notice that this is hardware-agnostic

CHOLLOOPBODY

[>><T SECSE-9

Transform with Implementations

@ A,;—~ DCHOL [+A,,' ey A, —->{ [Mc,M]=[*,*] +[LCHOL |+ [*,*]2[Mc,Mg] A,

DTRSM
r- - =--FnN"—--—-—_—-_Vw -V |
.
A '] A11_|_> [MC,MR]_' [;“] :
(b)A“ DTRSM [—A,,' ==p- | CILTRSM (| [V, 1= Mo Mgl Ay,
2 A21_:’ [MC’MR]_'[VO*] |
e |
_____ DHERKLN_ _ _ _ _ _ _

- |

'6‘21'_:—> [MC’MR] _'[MR’*] |

A21|—’ | :

©Azi'—| DHERKLN [—~A,," cup- A21'_:—’ [Mc,Mg] = [M,*] |
2 | = LTrRK A,

Transform to Optimize

[>><T SECSE-11

WHO KNOWS OF THE
BLAS?

Dsc]

BLAS3 Performance on BlueGene/P

NNNT WSy

2/3\:)f peak

~ e
< NLTTWSIL
I ® NNTY wsa] %
e Ll
T s 7
A NINTT WsiL
i I
NNNT Wil
I e
NITT W A
I
NNTY W)
———
NNTT W]
I
1N YA
I .
NN YJIAS
I N N
17 4As
| .
N1 4AS
I S N
1N gIAS
| .
NN AZIAS
I I N N
17 2IAS o
I 2
N1 42IAS <
I S N N S
- NY WwAs =
NWwAs =
I 3
T wawls B
17 WWAS ,,Ia
. v
1L Wwao <
Bl S
Nl Wwwan &0
I S N N 5
INWwWay ¢
I S S N N S
NN wwas @
. s s 5 2 o2 & & < :
S 3 s & 8 g g g 3 ~
(Sd0149) 2s2uewopiad M.,
*

Building Blocks

» The knowledge to generate that code forms a set of domain building blocks
— The BLAS are at the bottom of DLA software stacks

« More complicated algorithms use that knowledge
» When done by hand, it's rote re-application of knowledge
» When done by DxTer, who cares?

Dsc]

Starting Graph

20

21

11

11

10

10

00

Gemm
NN

»A

Trmm
Right

TwoSided
Trmm

Hemm
Left

AXpy

AXpy

Trmm
Left

Her2k

»A

00

Aeo\

A

Mo, Me] = [Mc,*]

LGemm
NT

Final Implementation

A

20
w —— —Ass
Trmm LTrmm

P

21
Lyg— M, Mg]= [*,%]
Aj—| IMc.Me]— [%,%]
Ao

Mo, Mgl =M "

/

Y10Templ[*, Vgl

LHemm
Left

74 —{ [Mc,Mg]=[*,Ve]
[Vel = [, Mc]

.\/‘/' LAxpy

|« LAXpy

[*, Vel = [*,Mg]

.

[*, Vel =% Mc]

Left

05 Vel 2 Mo Ml ——Aq

Nﬁ LTrr2k

Dsc]

H

/’Aoo

2/3 of peak Two-Sided Trmm on Intrepid

— DxTer Two-sided Trmm Optimized

— ScalLAPACK Two-sided Trmm
7 15000
al
@)
1
LL
O
— 10000
Q
c
©
=
§e,
5000
ol

0
2 4 6 8 10
Problem size (x10% x 10

*8,192 cores on Argonne’s Intrepid machine DXT SECSE-17

2/3 of peak Two-Sided Trmm on Intrepid

—%— DxTer Two-sided Trmm Optimized
—+=DxTer Two-sided Trmm Unoptimized
15000- — ScalLAPACK Two-sided Trmm

Problem size (x104) x10*

*8,192 cores on Argonne’s Intrepid machine DXT SECSE-18

Gemm
NN

- AR

20

Her2k

- AL

22

Trsm
Right

*A1o

TwoSided
Trsm

Right

AXpy

’A11

Dsc]

How Can We Do This?

» Requires DEEP domain knowledge
 Without domain understanding, we can’t do what experts do

» Requires software layering
* Need to be able to abstract key domain ideas and functionality
» DSLs are great at hiding minutia of domain
 Enable people to focus on important decisions
 Enables us to encode important knowledge

» We're not encoding knowledge for arbitrary C++ programs

Dsc]

Moving Forward

« Many CSE domains similarly have experts doing rote work

* Implementing similar (but sufficiently different) algorithms repeatedly for
one architecture

* Re-implementing the same algorithms for a new hardware target

Dsc]

Moving Forward

» Let's work towards encoding expert knowledge and automating the tedious part of
the expert's job

« Let's work toward getting the human out of the software development cycle
» Better performing code
 More trustworthy code
 Faster development times

 More scientific approach to software engineering (encoding knowledge/
patterns of domain instead of resulting code)

(—
ﬂf. —— L“ »
| Help Mor /¥ =
‘;{ Xperts!

N aL Dxc]

Questions?

bamarker@cs.utexas.edu

“‘ Help Mor &' [
“ Xperts!

PAR. N a5
[>><T SECSE-23

