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Uintah Runtime Verification (URV) Project 

 Goal: 

Analysis and checking of large high performance 

computing (HPC) problem solving environments 

 Credo: 

Crash early, crash often, explain well. 

 Opportunity: 

Formal methods and HPC teams sitting at the 

same table every two weeks since last summer 

 Focus: 

Lightweight formal methods for the Uintah HPC 

problem solving environment 



Uintah 



Uintah Overview 
 Parallel, adaptive multi-physics framework 

 Fluid-structure interaction problems 

 Patch-based AMR using particles and 
mesh-based fluid-solve 
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Industrial 
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Uintah Development 

 Uintah is developed over a decade 

 DOE NETL, C-SAFE, ASC Center... 

 Clear separation of application and infrastructure 

code from the start 

Domain Expert 

(Engineering)  

Infrastructure Expert           

(Computer Science) 

Focus Problem, methods Performance, scalability  

Responsibility Simulation 

components 

Infrastructure 

components 

Contributions Arches, ICE, MPM, 

MPM-ICE, etc. 

Load balancing, AMR,  

task-graph scheduling,  

communication, 

checkpointing 

View of 

Program 

Serial code written for 

a patch  

Parallel infrastructure, 

MPI, threads, GPU 



Modular Architecture of Uintah 



Benefits of Modular Architecture 

 All applications benefit from infrastructure 

improvements without change 

 Allows infrastructure developers to make 

improvements without understanding the 

science of the domain expert 

 Successfully scaled from 2K to 512K cores 

without any changes to applications code 



Benefits of Modular Architecture cont. 

 Infrastructure components easily updated to 

follow the latest architectures 

 Multicore and GPU support, lock-free data 

warehouse… 

 Adding formal methods is more feasible 



Uintah Scalability 

Patch-based domain decomposition 

Asynchronous 

task-based 

paradigm 

 512K cores on ANL Mira (Blue Gene/Q) 

 Multi-threaded MPI – shared memory model on-node 

 Scalable, efficient, lock-free data structures 



Uintah Task-Based Approach 

 Task graph 
 Directed acyclic graph 

 Asynchronous, out of order 
execution of tasks 
 Multi-stage work queue 

design 

 Task – basic unit of work 
 Sequential C++ procedure 

with computation 

 Allows Uintah to be 
generalized to support 
coprocessors and 
accelerators 
 No sweeping code changes 

4 patch, single level ICE task graph 



Support for Heterogeneous Systems 

 Utilize all on-node computational resources 

 Uintah’s asynchronous task-based approach well 

suited for coprocessor and accelerator designs 

 Introduce accelerator and coprocessor tasks 

TACC Stampede 

1000s of Xeon Phi Coprocessors 
DOE Titan 

1000s of GPUs 

Xeon Phi 

Multi-core CPU 

+ 

GPU 



Heterogeneous Scheduler & Runtime 



Lightweight Formal Methods 



Lightweight Formal Methods for HPC 

 Lightweight formal methods can help with 

 Exploring nondeterminism in a systematic way 

 Providing good measures of coverage 

 Explaining and root-causing errors 

 Runtime system monitoring 

 Hybrid concurrency 

 Memory models 

 Floating point precision 

 This talk: Explaining and root-causing errors 



Coalesced Stack Trace Graphs 

 Stack traces portray a story about the runtime 

execution of a program by showing 

 call paths leading to a particular function call 

 the number of times a particular path was taken 

 Facilitate understanding and root cause 

analysis of complex bugs 



Coalesced Stack Trace Graphs cont. 

 The number of stack traces collected during 

execution gets very large 

 Coalesce millions of stack traces using adequate 

graph representations called Coalesced Stack 

Trace Graphs (CSTGs) 

 Infrastructure developer controls where stack 

traces should be collected 



Basic Idea: Diff CSTGs 
CSTG 1 

CSTG 2 

Diff CSTG 



Two Case Studies using Real Bugs 

 MiniBoiler 

 Simulation of oxy-combustion in large-scale clean 

coal boilers 

 An exception is thrown in the data warehouse function 

get() when looking for an element that does not exist 

in the data warehouse 

 Explode2D_AMR 

 Simulation of explosion in Spanish Fork Canyon 

 Wrong calculation of neighbors causes a mismatch in 

the number of sends and receives causing Uintah to 

hang. This happens after the first regridding. 



Bug Study 1: MiniBoiler 

 An exception is thrown in the data warehouse 
function get() when looking for an element that 
does not exist in the warehouse 

 There are two possible reasons why this element 
was not found: 
 it was never inserted or, 
 it was inserted but then removed from the data 

warehouse 

 We insert stack trace collectors before data 
warehouse put() and remove() calls and visualize 
the result 

 We compare graphs of buggy and working 
executions 



CSTG of MiniBoiler 



CSTG of MiniBoiler Crash 



Diff of Good and Bad CSTG 



Diff of Good and Bad CSTG cont. 

 There is a path in the good version leading to the 
reduceMPI() function that never happened in the 
crashing version. 



Understanding the Difference 

 The two versions use different schedulers 

 Good: MPIScheduler calls initiateReduction 

 

 

 

 

 

 

 Bad: UnifiedScheduler never calls initiateReduction 

 

 

 



Understanding the Difference cont. 

 initiateReduction adds an element into the data 

warehouse that never gets added in the 

crashing version 

 The condition guarding this addition is evaluated to 

true only once 



Bug Study 2: Explode2D_AMR 

 Wrong calculation of neighbors causes a 

mismatch in sends and receives 

 Happens after the first regridding 

 Uintah hangs 

 For this example we observe stack traces 

separated by different time steps 



Time Step N 



Time Step N+1 



Comparison N/N+1 

 Just fewer MPI sends and receives 



Time Step N+2 

 Special event is happening 



Time Step N+3 

 Uintah hangs and the resulting graph 
is very different from N+2 and N+1. 

 The number of postMPISends() and 
postMPIRecvs() is not matching. 



Summary 

 CSTGs can be particularly useful to understand 

executions when comparing: 

 Working and non-working versions 

 Symmetric events such as Sends/Recvs, 

Lock/Unlock, New/Delete… 

 Repetitive sequences of events such as time steps 

 Stack traces can be aggregated by different 

time periods, processes, threads... 



Lightweight Formal Debugging Framework 

 Learn specification 
automata from traces 

 Generate runtime 
monitors 
 Run on idle cores 

 Schedule non-intrusively 

 When monitor throws 
an exception 
 Start/stop stack trace 

collection 

 Display CSTGs 


