
Practical Formal Correctness Checking

of Million-Core Problem Solving

Environments for HPC

Diego Caminha B. de Oliveira, Zvonimir Rakamarić, Ganesh

Gopalakrishnan, Alan Humphrey, Qingyu Meng, Martin Berzins

SECSE, May 18, 2013

Acknowledgements: NSF CCF 1241849 (EAGER: Formal Reliability Enhancement

Methods for Million Core Computational Frameworks) and NSF ACI 1148127 SI2-SSE

(Correctness Verification Tools for Extreme Scale Hybrid Concurrency)

Uintah Runtime Verification (URV) Project

 Goal:

Analysis and checking of large high performance

computing (HPC) problem solving environments

 Credo:

Crash early, crash often, explain well.

 Opportunity:

Formal methods and HPC teams sitting at the

same table every two weeks since last summer

 Focus:

Lightweight formal methods for the Uintah HPC

problem solving environment

Uintah

Uintah Overview
 Parallel, adaptive multi-physics framework

 Fluid-structure interaction problems

 Patch-based AMR using particles and
mesh-based fluid-solve

Shaped Charges

Industrial

Flares
Plume Fires

Explosions

Foam

Compaction

Sandstone

Compaction

Carbon Capture

Clean Coal Boiler

Uintah Development

 Uintah is developed over a decade

 DOE NETL, C-SAFE, ASC Center...

 Clear separation of application and infrastructure

code from the start

Domain Expert

(Engineering)

Infrastructure Expert

(Computer Science)

Focus Problem, methods Performance, scalability

Responsibility Simulation

components

Infrastructure

components

Contributions Arches, ICE, MPM,

MPM-ICE, etc.

Load balancing, AMR,

task-graph scheduling,

communication,

checkpointing

View of

Program

Serial code written for

a patch

Parallel infrastructure,

MPI, threads, GPU

Modular Architecture of Uintah

Benefits of Modular Architecture

 All applications benefit from infrastructure

improvements without change

 Allows infrastructure developers to make

improvements without understanding the

science of the domain expert

 Successfully scaled from 2K to 512K cores

without any changes to applications code

Benefits of Modular Architecture cont.

 Infrastructure components easily updated to

follow the latest architectures

 Multicore and GPU support, lock-free data

warehouse…

 Adding formal methods is more feasible

Uintah Scalability

Patch-based domain decomposition

Asynchronous

task-based

paradigm

 512K cores on ANL Mira (Blue Gene/Q)

 Multi-threaded MPI – shared memory model on-node

 Scalable, efficient, lock-free data structures

Uintah Task-Based Approach

 Task graph
 Directed acyclic graph

 Asynchronous, out of order
execution of tasks
 Multi-stage work queue

design

 Task – basic unit of work
 Sequential C++ procedure

with computation

 Allows Uintah to be
generalized to support
coprocessors and
accelerators
 No sweeping code changes

4 patch, single level ICE task graph

Support for Heterogeneous Systems

 Utilize all on-node computational resources

 Uintah’s asynchronous task-based approach well

suited for coprocessor and accelerator designs

 Introduce accelerator and coprocessor tasks

TACC Stampede

1000s of Xeon Phi Coprocessors
DOE Titan

1000s of GPUs

Xeon Phi

Multi-core CPU

+

GPU

Heterogeneous Scheduler & Runtime

Lightweight Formal Methods

Lightweight Formal Methods for HPC

 Lightweight formal methods can help with

 Exploring nondeterminism in a systematic way

 Providing good measures of coverage

 Explaining and root-causing errors

 Runtime system monitoring

 Hybrid concurrency

 Memory models

 Floating point precision

 This talk: Explaining and root-causing errors

Coalesced Stack Trace Graphs

 Stack traces portray a story about the runtime

execution of a program by showing

 call paths leading to a particular function call

 the number of times a particular path was taken

 Facilitate understanding and root cause

analysis of complex bugs

Coalesced Stack Trace Graphs cont.

 The number of stack traces collected during

execution gets very large

 Coalesce millions of stack traces using adequate

graph representations called Coalesced Stack

Trace Graphs (CSTGs)

 Infrastructure developer controls where stack

traces should be collected

Basic Idea: Diff CSTGs
CSTG 1

CSTG 2

Diff CSTG

Two Case Studies using Real Bugs

 MiniBoiler

 Simulation of oxy-combustion in large-scale clean

coal boilers

 An exception is thrown in the data warehouse function

get() when looking for an element that does not exist

in the data warehouse

 Explode2D_AMR

 Simulation of explosion in Spanish Fork Canyon

 Wrong calculation of neighbors causes a mismatch in

the number of sends and receives causing Uintah to

hang. This happens after the first regridding.

Bug Study 1: MiniBoiler

 An exception is thrown in the data warehouse
function get() when looking for an element that
does not exist in the warehouse

 There are two possible reasons why this element
was not found:
 it was never inserted or,
 it was inserted but then removed from the data

warehouse

 We insert stack trace collectors before data
warehouse put() and remove() calls and visualize
the result

 We compare graphs of buggy and working
executions

CSTG of MiniBoiler

CSTG of MiniBoiler Crash

Diff of Good and Bad CSTG

Diff of Good and Bad CSTG cont.

 There is a path in the good version leading to the
reduceMPI() function that never happened in the
crashing version.

Understanding the Difference

 The two versions use different schedulers

 Good: MPIScheduler calls initiateReduction

 Bad: UnifiedScheduler never calls initiateReduction

Understanding the Difference cont.

 initiateReduction adds an element into the data

warehouse that never gets added in the

crashing version

 The condition guarding this addition is evaluated to

true only once

Bug Study 2: Explode2D_AMR

 Wrong calculation of neighbors causes a

mismatch in sends and receives

 Happens after the first regridding

 Uintah hangs

 For this example we observe stack traces

separated by different time steps

Time Step N

Time Step N+1

Comparison N/N+1

 Just fewer MPI sends and receives

Time Step N+2

 Special event is happening

Time Step N+3

 Uintah hangs and the resulting graph
is very different from N+2 and N+1.

 The number of postMPISends() and
postMPIRecvs() is not matching.

Summary

 CSTGs can be particularly useful to understand

executions when comparing:

 Working and non-working versions

 Symmetric events such as Sends/Recvs,

Lock/Unlock, New/Delete…

 Repetitive sequences of events such as time steps

 Stack traces can be aggregated by different

time periods, processes, threads...

Lightweight Formal Debugging Framework

 Learn specification
automata from traces

 Generate runtime
monitors
 Run on idle cores

 Schedule non-intrusively

 When monitor throws
an exception
 Start/stop stack trace

collection

 Display CSTGs

