
SC12 Educator’s Session
November 13, 2012

Test-Driven Development

Introduction

 Name

 Institution

 Knowledge of Software Engineering

 What you want to get out of today’s
tutorial

SC12
Educator's Session 2

Slides Available

 SC12 Website
 Communities-> HPC Educators -> HPC

Educator’s Program -> 13

SC12
Educator's Session 3

Motivating Example:
Mars Climate Orbiter

 $125M satellite

 Goal: Help scientists
understand Mars water
history and potential for life

 Lost because of metric to
English measurement
conversion

SC12
Educator's Session 4

Motivating Example:
Climategate

 Correctness of science called into question
because of software quality factors

 Scientists do not always use well-
documented practices

 Resulted in call for better transparency
into software development processes

SC12
Educator's Session 5

Outline

 Software Quality

 Overview of Testing

 Automated Testing Tools

 Test-Driven Development

SC12
Educator's Session 6

SOFTWARE QUALITY

SC12
Educator's Session 7

Software Quality

 Multiple Definitions

 Developer’s View vs. User’s View
 Developers = Correctness
 Users = Reliability

SC12
Educator's Session 8

Definitions

 Software must do the right things
 Perform the right functions
 Often referred to as Validation

 Software must do things right

 Perform intended functions without problems
 Often referred to as Verification

 Together referred to as V&V

SC12
Educator's Session 9

Quality Definitions:
Defects

 Failure
 “Inability of the system to perform its required function

within specified performance requirements”
 Something goes wrong at execution

 Fault

 “An incorrect step, process, or data definition in a
computer program”

 A mistake written down in a document

 Error
 “A human action that produces an incorrect result”
 The misunderstanding on the part of the human

10
SC12

Educator's Session

11

Quality Definitions:
Defects

SC12
Educator's Session

Quality Focus

 Customers/Users
 External
 Failures – which ones, likelihood, severity, etc.

 Developers
 Internal
 Faults – which ones, what type, severity, etc.

12
SC12

Educator's Session

SC12
Educator's Session 13

QA Activities:
Types

 Defect Prevention
 Error blocking
 Error source removal

 Defect Reduction
 Inspection
 Testing

 Defect Containment

 Fault-tolerance techniques to localize failure
 Failure containment to avoid catastrophic failure

DEFECT PREVENTION

SC12
Educator's Session 15

SC12
Educator's Session 16

Defect Prevention:
Introduction

 Reduce the chance of fault injection

 Approach depends on source
 Human misconceptions

 Education and Training
 Imprecise design and implementation

 Formal methods
 Non-conformance to processes or standards

 Process conformance or standard enforcement

 There may be specific tools or technologies that
can also help

 Important to establish the correct root-cause

SC12
Educator's Session 17

Defect Prevention:
Education and Training

 People are most important factor in quality
and success

 Education and Training can improve the
quality of the work done by practitioners

 Elimination of misconceptions will reduce
the probability of defect injection

SC12
Educator's Session 18

Defect Prevention:
Education and Training

 Product and Domain Specific Knowledge
 Unfamiliarity could lead to misunderstandings

 Software Development Expertise

 Poorly written requirements/design can lead to problems

 Knowledge about tools, methods, techniques
 Lack of knowledge could lead to misuse

 Development Process Knowledge

 Hard to properly implement the process if developers do not
understand it

SC12
Educator's Session 19

Defect Prevention:
Formal Methods

Formal Methods

Formal Specification Formal Verification

Help eliminate error sources and verify the absence of faults

SC12
Educator's Session 20

Formal Methods:
Axiomatic Approach

Code

Axiom 1

Axiom 2

Axiom 3
Program

Conditions Describing Program
State Before Execution

Conditions Describing Program
State After Execution

Meaning

Biggest obstacle to use of formal methods:
Cost

SC12
Educator's Session 21

Defect Prevention:
Other Techniques

 Use of additional software development
methodologies (besides Formal Methods)
 Prevent extra functionality
 Reduce complexity

 Better management
 Concrete process definition
 Enforcement of standards

 Use of specific tools
 Enforce coding standards

SC12
Educator's Session 22

QA Activities:
Defect Prevention

DEFECT REDUCTION

SC12
Educator's Session 23

SC12
Educator's Session 24

Defect Reduction:
Introduction

 Unrealistic to expect Defect Prevention
step to stop all defects

 Different approaches
 Inspection
 Testing
 Other techniques

SC12
Educator's Session 25

Defect Reduction:
Testing

 Execution of software and checking results
 Locates failures
 Isolate and fix the fault(s) that led to the

failure

 When to test
 Need some executable
 Unit tests of components through acceptance

test of entire system
 Can also use prototypes

SC12
Educator's Session 26

Defect Reduction:
What to Test

 Functional (black box)
 External behavior
 User observable behavior
 Focus: reducing the chances of a target user

encountering a functional problem

 Structural (white box)
 Internal structure
 Correct implementation
 Focus: reduce internal faults so the software

is less likely to fail in an unknown situation

SC12
Educator's Session 27

Defect Reduction:
When to Stop Testing

 Can use coverage criteria
 Assumption: higher coverage  fewer

remaining defects
 Functional or Structural

 Reliability goals

 More objective
 Measures what users are likely to encounter
 Can be tailored for anticipated user groups

SC12
Educator's Session 28

Defect Reduction:
Observations

 Many other techniques available

 In-field measurement and repair not
normally considered part of QA

 Important to determine risky components
 Typically 80% of faults occur in 20% of

components
 Often these components can be identified

with appropriate metrics (i.e. size, complexity)

SC12
Educator's Session 29

QA Activities:
Defect Reduction

DEFECT CONTAINMENT

SC12
Educator's Session 30

SC12
Educator's Session 31

Defect Containment:
Introduction

 Important for systems where the impact
of failures is substantial

 Not all faults can be eliminated (cost,
time)

 Rather than comprehensively removing all
failures, find ways to isolate the impact of
those that remain in the software

SC12
Educator's Session 32

Defect Containment:
Fault Tolerance

 Different from manufacturing

 Approaches
 Recovery Blocks

 Repeated execution
 If a failure is discovered, portion of execution is repeated

 N-Version Programming
 N versions of the software perform the same functionality
 Execute in parallel
 Overall algorithm prevents failures from propagating

 Does not focus on identifying and removing the

faults that cause the failures

SC12
Educator's Session 33

Defect Containment:
Safety Assurance

 Safety-critical systems: failure  accident

 Address even low probability failures

 Safety Assurance techniques
 Hazard elimination – similar to defect prevention but

focused on safety critical issues
 Hazard reduction – similar to fault tolerance
 Hazard control – reduce severity or impact of failures
 Damage control – reduce severity of accidents

SC12
Educator's Session 34

QA Activities:
Defect Containment

INTRODUCTION TO TESTING

SC12
Educator's Session 35

Types of Testing

SC12
Educator's Session 36

Unit Testing Code

Integration Testing

System Testing

Design

Requirements

Acceptance Testing
Users

SC12
Educator's Session 37

Unit Testing
 What?

 Code units
 Varies with programming language

 Who?

 Developer

 What is the focus?
 Correctness of implementation
 Executable statements, control flow, data flow

 What type of testing techniques do we use?

 White-box
 Ad hoc (coverage tools)
 Input domain partitioning
 Control Flow / Data Flow

SC12
Educator's Session 39

Integration Testing
 What?

 Collection of components

 Who?
 Professional testers

 What is the focus?

 Integrating components to work together to accomplish functionality
 Each component is a black box
 Interfaces are tested

 What type of testing techniques do we use?

 White box – units are the components rather than statements
 FSM – model control passing between components

 Merged with System Testing?

SC12
Educator's Session 40

System Testing
 What?

 Entire system

 Who?
 Professional testers

 What is the focus?

 Overall function from customer’s point of view
 System is black box – external functions tested

 What type of testing techniques do we use?

 Function checklist
 FSM representing system functions
 Operational profiles

 Embedded systems?

SC12
Educator's Session 41

Acceptance Testing

 What?
 System

 Who?

 Professional testers

 What is the focus?
 Is the system reliable enough to release?
 What support will have to be provided?
 Not focused on fixing problems

 What type of testing techniques do we use?

 Usage-based statistical testing

SC12
Educator's Session 42

Functional vs. Structural

Black Box

White Box

Inputs Outputs

SC12
Educator's Session 43

Functional vs. Structural

 Individual elements
 Statements
 Functions
 Components

 Interactions of elements
 Sub-system
 System

 Inputs and outputs – functional

SC12
Educator's Session 44

Black Box (Functional) Testing:
Overview

 Observes external behavior of software

 What are some approaches we could
take?
 Ad hoc
 User scenarios
 Checklist
 Formal Models

SC12
Educator's Session 45

Black Box (Functional) Testing:
Process

 Planning
 Identify external functions to test
 Derive inputs and outputs
 Set quality goals

 Exit criteria
 Completion of test cases

 Execution

 Observe behavior
 Record problems
 Note execution information to aid in repair

 Analysis

 Compare results to expectations
 Testing oracle problem
 Leads to follow-up action to correct the problem

SC12
Educator's Session 46

White Box (Structural) Testing:
Overview

 Verifies correct implementation of software units

 What are some approaches?
 Ad hoc
 Results of functional tests (defects)
 Coverage

 What knowledge is needed?

 Programming (general)
 Tools
 Specifics of the code

SC12
Educator's Session 47

Stopping Criteria:
Coverage-Based

 Ensures some item has been covered

 Assumes that higher coverage equals
higher quality

 Approaches
 Checklist
 Partitions
 Finite State Machines

SC12
Educator's Session 48

Coverage Based Testing:
Process

 Define the model

 Check the model elements

 Define the coverage criteria

 Derive the test cases

Test Activities

 Test Planning

 Test Execution

 Analysis and Follow-up

SC12
Educator's Session 49

SC12
Educator's Session 50

Test Planning

 High level goal: Determine the test strategy
 Identify the types of testing
 Set the exit criteria

 Make the following decisions

 Overall objectives and goals
 Objects to be tested and focus

 Have to account for personnel

SC12
Educator's Session 51

Test Planning:
Test Case Creation

 What is needed?
 Inputs
 Outputs
 Dependencies

 How are they generated?

 Using inputs and outputs
 Replay of actual user scenarios

SC12
Educator's Session 52

Test Planning:
Test Suite Preparation

 What is a test suite?

 How are they created?

 Expensive  should be maintained for
future use

SC12
Educator's Session 53

Test Planning:
Preparation of Procedure

 Ordering of test cases
 Dependencies
 Defect detection
 Problem diagnosis
 Natural groupings

 One test case should leave the system ready
to execute the next

 Assignment of personnel

SC12
Educator's Session 54

Test Execution:
Overview

 Major steps:
 Allocation of time and resources
 Running tests
 Analyzing results

 Prevent failed test cases from halting
execution

 Environment

Specific Approaches to Testing

 Control Flow Testing

 Partition-based Testing

 Usage-based Testing

 Data-flow Testing

SC12
Educator's Session 55

SC12
Educator's Session 56

Systematic Testing

 Drawbacks to ad hoc testing
 Lack of structure
 Likely to repeat
 Likely to miss

 One way to structure is to build a checklist

SC12
Educator's Session 57

Control Flow Testing:
Overview

 Model of the software
is a graph
 Nodes (entry, exit,

decision, junction,
processing)

 Links (outlinks, inlinks)
 Paths

 Use
 Build graph
 Define paths
 Choose inputs
 Check results

first

A

B

C E D

F

G

last

SC12
Educator's Session 58

Control Flow Testing:
Model Construction

 Using program code, build graph

 Processing nodes
 Assignment or function calls

 Decision

 If-then / if-then-else
 Loops

 Entry/Exit – first and last statements

 Creates a large number of nodes. How can we deal with

this?

SC12
Educator's Session 59

Control Flow Testing:
Model Construction

 Can also be done with black box testing
 How?

 Elements
 Processing nodes

 Some described action
 Branching nodes

 Some decision
 Entry/Exit

 First and last items

SC12
Educator's Session 60

Control Flow Testing:
Path Selection

 Structured CFG
 Only sequential

concatenation and
nesting allowed (no go-
tos)

 Unique entry and unique
exit

 Can be decomposed

into subgraphs – each
subgraph is a proper
CFG
 G = G1 ◦ G2 (-,G3)

P1
C1

P2 P3

J1
C2

P4

J3

C3

P5 P6

J2

P7

G1

G3

G2

SC12
Educator's Session 61

Control Flow Testing:
Path Selection

 With two graphs (G1,
G2); G1 has M paths
and G2 has N paths.

 Sequential combination
[G = G1 ◦ G2]
 M x N paths

 For nesting [G = G2

(G3)]
 M +N -1 paths

 Start with the prime

CFGs and work up

P1
C1

P2 P3

J1
C2

P4

J3

C3

P5 P6

J2

P7

G1

G3

G2

Control Flow Testing:
Model Construction

L1: input(a,b,c)
L2: d  b*b – 4*a*c
L3: If (d>0) then
L4: r  2
L5: else_if (d=0)
L6: r  1
L7: else_if (d<0)
L8: r  0
L9: output (r)

SC12
Educator's Session 62

SC12
Educator's Session 63

Control Flow Testing:
Creating Test Cases

 If each decision is based on an
independent variable, then just choose
appropriate values
 Can use the idea of equivalence classes

 If decisions are not independent, some
branches may be eliminated as infeasible

 Some decisions may be based on
processing between decisions nodes –
may be hard to develop test cases

SC12
Educator's Session 64

Loops

 Loops complicate the CFT idea. Why?
 Could result in a lot of test cases
 May be unpredictable

 Parts of a loop:

 Loop body – accomplishes something; repeated a
number of times – represented by a node or a nested
CFG

 Loop control – decision point – represented by a
decision node

 Loop entry/exit – usually have only one – often are
the decision point

 Can be combined through nesting

SC12
Educator's Session 65

Loops

Prev

C?

B

Next

T
F

While (C) do {B}

I

C?

B

Next

T F

For (I; C; U) do {B}

U

Prev

SC12
Educator's Session 66

Loop Testing:
Difficulties

 When loops are nested, number of paths quickly grows
unmanageable

 Complete path coverage not possible, have to be selective

 Where do most problems occur?
 Loop boundaries
 Use equivalence class concepts

 What types of test cases do we need and why?

 Bypass the loop
 Once through the loop
 Twice through the loop
 Typical cases

SC12
Educator's Session 67

Loop Testing:
Difficulties

 Concatenation/Nesting of loops
 7 test cases for each loop (bypass, once,

twice, typical, max-1, max, max+1)
 7n for n concatenated loops

 How can we reduce number of test cases?
 Test the inner loops with all 7 cases
 Fix the inner loop with only 1 case and move

up the hierarchy (or randomly select one case
each time)

Specific Approaches to Testing

 Control Flow Testing

 Partition-based Testing

 Usage-based Testing

 Data-flow Testing

SC12
Educator's Session 68

SC12
Educator's Session 69

Partition Based Testing

 Benefits
 Increased coverage
 Reduced overlap

 Examples:

 Solve for root of ax2 + bx + c = 0

 Thermostat

SC12
Educator's Session 70

Partition Testing:
Theory

 A set S contains a list of unique elements

 Partition of S creates subsets G1, G2, … Gn such that
 Sets are mutually exclusive
 Sets are collectively exhaustive

 G1..Gn are equivalence classes if created based on

some definition of equality

 Properties
 Symmetric
 Transitive
 Reflexive

AUTOMATED TESTING TOOLS

SC12
Educator's Session 71

Automated Testing Frameworks

 Enable set of tests to be executed
repeatedly

 Family of tools
 jUnit
 cUnit
 … (xUnit)

 Demo
SC12

Educator's Session 72

jUnit

 Plug-in for Eclipse

 Demo of how to use:
 Create project
 In ‘src’ folder, create package
 Create new ‘source folder’ “test”
 In ‘test’ folder, create package
 Create new jUnit Test
 Run test

SC12
Educator's Session 73

cUnit

 http://cUnit.sourceforge.net

 Framework to create and execute tests

 Assertions
 CU_ASSERT
 CU_ASSERT_TRUE
 CU_ASSERT_FALSE
 CU_ASSERT_EQUAL
 CU_ASSERT_NOT_EQUAL
 …

SC12
Educator's Session 74

http://cunit.sourceforge.net/

cUnit:
Test Registry

 Repository of test suites and tests

 Using the test registry
 Create
 Clean up

 Adding tests
 Create a test suite
 Add tests to the test suite

SC12
Educator's Session 75

cUnit:
Running Tests

 Can run:
 All tests
 Individual suites
 Individual tests

 Modes
 Automated – non-automated / XML output
 Basic – non-automated / stdout output
 Console – interactive console under user

control
 SC12

Educator's Session 76

cUnit:
Demo

 Install cUnit
 ./configure
 make
 make install
 Rename library to ‘cunit’ and place in path
 Link the ‘cunit’ library in when compiling code

 Perform Unit Testing
 Write tests
 Execute tests
 Examine results (XML)

SC12
Educator's Session 77

TEST-DRIVEN DEVELOPMENT

SC12
Educator's Session 78

Test-Driven Development:
Introduction & Background

 Basic idea:
 Write automated tests
 Prior to developing functional code
 Small rapid iterations

 Part of the agile software development approach

 Short iterations
 Little up-front design
 Lightweight documentation
 Refactoring
 Pair programming

SC12
Educator's Session 79

Test-Driven Development:
Overview

 Focus on unit tests
 Traditionally written after code is completed
 In TDD tests are written before code

 Often require
 Test drivers
 Test stubs

 Can be automated or manual

 Can be performed by developers or testers
SC12

Educator's Session 80

Test-Driven Development:
Motivation

 Programming practice that instructs
developers to:
 Write code only if a test has failed
 Eliminate duplication

 Test-Driven Development
 Leads to analysis, design and programming

decisions
 Writing a test is one of the first steps in

deciding what a program should do (analysis)
SC12

Educator's Session 81

Test-Driven Development:
Definition

 From the Agile Alliance

 Test-driven development (TDD) is the craft of
producing automated tests for production code, and
using that process to drive design and programming.
For every tiny bit of functionality in the production
code, you first develop a test that specifies and
validates what the code will do. You then produce
exactly as much code as will enable that test to pass.
Then you refactor (simplify and clarify) both the
production code and the test code.

SC12
Educator's Session 82

Test-Driven Development:
Additional Thoughts

 Refactoring
 Additional step after coding
 Code becomes complex
 Tests still pass, but code is simpler

 Not a software development methodology

 Provides automated test

 Not thrown away
 Become part of the development process
 If a change breaks something that worked before,

developer knows immediately

SC12
Educator's Session 83

Test-Driven Development:
Process

SC12
Educator's Session

Story

Understand

Implement Story

Write Tests for Story

Run ALL tests

Result?

Rework

Fail
Pass

Next Story Test Last

Story

Understand

Add a Single Test

Add Code for Test

Run ALL tests

Result?

Rework

Fail

Pass

Next Story
Test First

Story
Complete?

No

Yes

84

Test-Driven Development:
Example Story

SC12
Educator's Session

Implement Story

Test A
Test B
A fails

Rework

B fails
Rework
A fails

Rework
A and B pass

Test Last

tim
e

Story

Test A
A fails

Implement A

A fails
Rework

A passes
Test B
B fails

Implement B

B fails
Rework

A and B pass

Test First

tim
e

Task A

Task B

85

Test-Driven Development:
Automated Testing

 TDD assumes the presence of an
automated testing framework

 Test Harnesses

 xUnit
 Lets users write tests to initialize, execute,

and make assertions about code being tested
 Tests can serve as documentation

SC12
Educator's Session 86

Test-Driven Development:
Evaluation

 Performed in Industry and Academia

 Industrial studies
 4 studies in small companies
 Measured defect density
 Results

 Programmers using TDD produced code that passed
18% - 50% more tests

 TDD programmers spent less time debugging
 TDD decreased productivity – but they wrote more test

cases
 SC12

Educator's Session 87

Test-Driven Development:
Challenges to Adoption

 Requires discipline by programmers

 TDD is misunderstood – many think it
addresses only testing and not design

 Does not fit every situation

SC12
Educator's Session 88

Test-Driven Development:
Example

 Design a system to perform financial
transactions with money that may be in
different currencies

 For example –
 If the exchange rate from My New Currency

to US Dollars is 2 to 1, then we can calculate
 5 USD + 10 MNC = 10 USD
 5 USD + 10 MNC = 20 MNC

SC12
Educator's Session 89

Example:
Starting Point

 How do we start?

 Write a list of things we want to test

 List can be any format, just keep it simple

 Example
 5 USD + 10 MNC = 10 USD if rate is 2:1
 5 USD * 2 = 10 USD

SC12
Educator's Session 90

Example:
First Test

 Second item is easier, start there
 5 USD * 2 = $10

 First write a test case

SC12
Educator's Session 91

Example:
Test Case Discussion

 What benefits does this provide?

 Target class plus some of its interface
 Design the interface of the Dollar class by

thinking about how we would want to use it

 Testable assertion about the state of the

Dollar class after a particular sequence of
operations

SC12
Educator's Session 92

Example:
Next Step

 Test case revealed some issues with the
Dollar class that must be cleaned up
 The amount is represented as an integer, making

it difficult to handle things like 1.5 USD; how do
we handle rounding of fractions?

 Dollar.amount is public; violates encapsulation
 Side effects?

 We first declared our variable as “five”, but after we
performed the multiplication, it equals “ten”

 Update Test List

SC12
Educator's Session 93

Example:
First Version of Dollar Class

 Our test will not compile
 What compile errors will we encounter?
 Fix compile errors
 Create skeleton of Dollar class

 Now our test compiles and fails

SC12
Educator's Session 94

Example:
Too Slow?

 Process
 Do the simplest thing to get the test to compile
 Now do the simplest thing to get the test to pass

 Is this process too slow?
 Yes

 As you get familiar with the TDD lifecycle you will gain
confidence and make bigger steps

 No
 Small simple steps help avoid mistakes
 Beginning programmers try to code too much before

compiling
 Spend the rest of their time debugging!

 SC12
Educator's Session 95

Example:
Make the Test Case Pass

 First do simplest thing to get test case to
pass

 The test now passes

 Now, we need to refactor to remove
duplication
 Where is the duplication?
 Hint: Its between the Dollar class and the test

case
SC12

Educator's Session 96

Example:
Refactoring

 To remove the duplication of the test data
and the hard-wired code of the times
method, we think the following
 I am trying to get at 10 at the end of my test

case. I’ve been given a 5 in the constructor
and a 2 was passed as a parameter to the
times method

 Let’s connect things

SC12
Educator's Session 97

Example:
First Version of Dollar Class

 Refactor Dollar class

 Now our test compiles and passes, and we
didn’t have to cheat!

 One TDD loop complete
 Update testing list
 Move on to next item

SC12
Educator's Session 98

Example:
Second Loop

 Address the “Dollar Side-Effects” item

 Next test case
 When we called the times operation on our

variable, “five” was pointing at an object whose
amount equaled “ten”; not good
 The times operation had a side effect which was to

change the value of a previously created “value object”
 This doesn’t make sense, you can’t change a $5 bill into

a $10 bill; the $5 bill remains the same throughout
transactions

 Rewrite test case
SC12

Educator's Session 99

Example:
Test Fails

 Won’t compile
 How do we fix this problem?

 Change the signature of the times

method; previously it returned void and
now it needs to return Dollar

 The test compiles but still fails – progress
 How do we fix this problem?

SC12
Educator's Session 100

Example:
Test Passes

 To make the test pass, we need to return a
new Dollar object whose amount equals the
result of the multiplication

 Test passes, cross “Dollar Side-Effects” off of

the testing list.

 No need to refactor here

 Move on to next test item
SC12

Educator's Session 101

C Example

 Write a program to calculate bowling score
using TDD

 Description
 10 frames, in each frame 2 balls to knock down

10 pins
 Spare – all 10 pins with two balls

 Bonus – get to add number of pins on next ball
 Strike – all 10 pins with one ball

 Bonus – get to add number of pins on next 2 balls
 10th frame – spare or strike entitles additional ball

rolls (no more than 3 total in the frame)
SC12

Educator's Session 102

C Example:
Test Cases

 Test a “gutter game” – all 0s

 Test “all ones” – hitting 1 pin with all balls

 Test “one spare” – 1 spare, plus bonus, the
rest 0s

 Test “one strike” – 1 strike, plus bonus, the
rest 0s

 Test “perfect game” – all strikes (12)
SC12

Educator's Session 103

HANDS-ON TIME

SC12
Educator's Session 104

Materials

 Updated slides and handouts available on
the web

 http://carver.cs.ua.edu/SC12_Tutorial/

SC12
Educator's Session 105

http://carver.cs.ua.edu/SC12_Tutorial/

References

 Jansen, D. and Saiedian, H. “Test-Driven Development:
Concepts, Taxonomy, and Future Direction.” Computer. Sept.
2005. p. 43-50

 Erdogmus, H., Morisio, M., and Torchiano, M. “On the
Effectiveness of the Test-First Approach to Programming.”
IEEE Transactions on Software Engineering. 31(5): 226-237.
March 2006.

 Currency example taken from
 Kenneth Anderson, Univ. of Colorado, Boulder

 Bowling example taken from

 http://www.slideshare.net/amritayan/test-driven-development-
in-c

SC12
Educator's Session 106

http://www.slideshare.net/amritayan/test-driven-development-in-c
http://www.slideshare.net/amritayan/test-driven-development-in-c

	Test-Driven Development
	Introduction
	Slides Available
	Motivating Example:�Mars Climate Orbiter
	Motivating Example:�Climategate
	Outline
	Software Quality
	Software Quality
	Definitions
	Quality Definitions:�Defects
	Quality Definitions:�Defects
	Quality Focus
	QA Activities:�Types
	Defect Prevention
	Defect Prevention:�Introduction
	Defect Prevention:�Education and Training
	Defect Prevention:�Education and Training
	Defect Prevention:�Formal Methods
	Formal Methods:�Axiomatic Approach
	Defect Prevention:�Other Techniques
	QA Activities:�Defect Prevention
	Defect Reduction
	Defect Reduction:�Introduction
	Defect Reduction:�Testing
	Defect Reduction:�What to Test
	Defect Reduction:�When to Stop Testing
	Defect Reduction:�Observations
	QA Activities:�Defect Reduction
	Defect Containment
	Defect Containment:�Introduction
	Defect Containment:�Fault Tolerance
	Defect Containment:�Safety Assurance
	QA Activities:�Defect Containment
	Introduction to Testing
	Types of Testing
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing
	Functional vs. Structural
	Functional vs. Structural
	Black Box (Functional) Testing:�Overview
	Black Box (Functional) Testing:�Process
	White Box (Structural) Testing:�Overview
	Stopping Criteria:�Coverage-Based
	Coverage Based Testing:�Process
	Test Activities
	Test Planning
	Test Planning:�Test Case Creation
	Test Planning:�Test Suite Preparation
	Test Planning:�Preparation of Procedure
	Test Execution:�Overview
	Specific Approaches to Testing
	Systematic Testing
	Control Flow Testing:�Overview
	Control Flow Testing:�Model Construction
	Control Flow Testing:�Model Construction
	Control Flow Testing:�Path Selection
	Control Flow Testing:�Path Selection
	Control Flow Testing:�Model Construction
	Control Flow Testing:�Creating Test Cases
	Loops
	Loops
	Loop Testing:�Difficulties
	Loop Testing:�Difficulties
	Specific Approaches to Testing
	Partition Based Testing
	Partition Testing:�Theory
	Automated Testing Tools
	Automated Testing Frameworks
	jUnit
	cUnit
	cUnit:�Test Registry
	cUnit:�Running Tests
	cUnit:�Demo
	Test-Driven Development
	Test-Driven Development:�Introduction & Background
	Test-Driven Development:�Overview
	Test-Driven Development:�Motivation
	Test-Driven Development:�Definition
	Test-Driven Development:�Additional Thoughts
	Test-Driven Development:�Process
	Test-Driven Development:�Example Story
	Test-Driven Development:�Automated Testing
	Test-Driven Development:�Evaluation
	Test-Driven Development:�Challenges to Adoption
	Test-Driven Development:�Example
	Example:�Starting Point
	Example:�First Test
	Example:�Test Case Discussion
	Example:�Next Step
	Example:�First Version of Dollar Class
	Example:�Too Slow?
	Example:�Make the Test Case Pass
	Example:�Refactoring
	Example:�First Version of Dollar Class
	Example:�Second Loop
	Example:�Test Fails
	Example:�Test Passes
	C Example
	C Example:�Test Cases
	Hands-On Time
	Materials
	References

