
SC12 Educator’s Session
November 13, 2012

Test-Driven Development

Introduction

 Name

 Institution

 Knowledge of Software Engineering

 What you want to get out of today’s
tutorial

SC12
Educator's Session 2

Slides Available

 SC12 Website
 Communities-> HPC Educators -> HPC

Educator’s Program -> 13

SC12
Educator's Session 3

Motivating Example:
Mars Climate Orbiter

 $125M satellite

 Goal: Help scientists
understand Mars water
history and potential for life

 Lost because of metric to
English measurement
conversion

SC12
Educator's Session 4

Motivating Example:
Climategate

 Correctness of science called into question
because of software quality factors

 Scientists do not always use well-
documented practices

 Resulted in call for better transparency
into software development processes

SC12
Educator's Session 5

Outline

 Software Quality

 Overview of Testing

 Automated Testing Tools

 Test-Driven Development

SC12
Educator's Session 6

SOFTWARE QUALITY

SC12
Educator's Session 7

Software Quality

 Multiple Definitions

 Developer’s View vs. User’s View
 Developers = Correctness
 Users = Reliability

SC12
Educator's Session 8

Definitions

 Software must do the right things
 Perform the right functions
 Often referred to as Validation

 Software must do things right

 Perform intended functions without problems
 Often referred to as Verification

 Together referred to as V&V

SC12
Educator's Session 9

Quality Definitions:
Defects

 Failure
 “Inability of the system to perform its required function

within specified performance requirements”
 Something goes wrong at execution

 Fault

 “An incorrect step, process, or data definition in a
computer program”

 A mistake written down in a document

 Error
 “A human action that produces an incorrect result”
 The misunderstanding on the part of the human

10
SC12

Educator's Session

11

Quality Definitions:
Defects

SC12
Educator's Session

Quality Focus

 Customers/Users
 External
 Failures – which ones, likelihood, severity, etc.

 Developers
 Internal
 Faults – which ones, what type, severity, etc.

12
SC12

Educator's Session

SC12
Educator's Session 13

QA Activities:
Types

 Defect Prevention
 Error blocking
 Error source removal

 Defect Reduction
 Inspection
 Testing

 Defect Containment

 Fault-tolerance techniques to localize failure
 Failure containment to avoid catastrophic failure

DEFECT PREVENTION

SC12
Educator's Session 15

SC12
Educator's Session 16

Defect Prevention:
Introduction

 Reduce the chance of fault injection

 Approach depends on source
 Human misconceptions

 Education and Training
 Imprecise design and implementation

 Formal methods
 Non-conformance to processes or standards

 Process conformance or standard enforcement

 There may be specific tools or technologies that
can also help

 Important to establish the correct root-cause

SC12
Educator's Session 17

Defect Prevention:
Education and Training

 People are most important factor in quality
and success

 Education and Training can improve the
quality of the work done by practitioners

 Elimination of misconceptions will reduce
the probability of defect injection

SC12
Educator's Session 18

Defect Prevention:
Education and Training

 Product and Domain Specific Knowledge
 Unfamiliarity could lead to misunderstandings

 Software Development Expertise

 Poorly written requirements/design can lead to problems

 Knowledge about tools, methods, techniques
 Lack of knowledge could lead to misuse

 Development Process Knowledge

 Hard to properly implement the process if developers do not
understand it

SC12
Educator's Session 19

Defect Prevention:
Formal Methods

Formal Methods

Formal Specification Formal Verification

Help eliminate error sources and verify the absence of faults

SC12
Educator's Session 20

Formal Methods:
Axiomatic Approach

Code

Axiom 1

Axiom 2

Axiom 3
Program

Conditions Describing Program
State Before Execution

Conditions Describing Program
State After Execution

Meaning

Biggest obstacle to use of formal methods:
Cost

SC12
Educator's Session 21

Defect Prevention:
Other Techniques

 Use of additional software development
methodologies (besides Formal Methods)
 Prevent extra functionality
 Reduce complexity

 Better management
 Concrete process definition
 Enforcement of standards

 Use of specific tools
 Enforce coding standards

SC12
Educator's Session 22

QA Activities:
Defect Prevention

DEFECT REDUCTION

SC12
Educator's Session 23

SC12
Educator's Session 24

Defect Reduction:
Introduction

 Unrealistic to expect Defect Prevention
step to stop all defects

 Different approaches
 Inspection
 Testing
 Other techniques

SC12
Educator's Session 25

Defect Reduction:
Testing

 Execution of software and checking results
 Locates failures
 Isolate and fix the fault(s) that led to the

failure

 When to test
 Need some executable
 Unit tests of components through acceptance

test of entire system
 Can also use prototypes

SC12
Educator's Session 26

Defect Reduction:
What to Test

 Functional (black box)
 External behavior
 User observable behavior
 Focus: reducing the chances of a target user

encountering a functional problem

 Structural (white box)
 Internal structure
 Correct implementation
 Focus: reduce internal faults so the software

is less likely to fail in an unknown situation

SC12
Educator's Session 27

Defect Reduction:
When to Stop Testing

 Can use coverage criteria
 Assumption: higher coverage fewer

remaining defects
 Functional or Structural

 Reliability goals

 More objective
 Measures what users are likely to encounter
 Can be tailored for anticipated user groups

SC12
Educator's Session 28

Defect Reduction:
Observations

 Many other techniques available

 In-field measurement and repair not
normally considered part of QA

 Important to determine risky components
 Typically 80% of faults occur in 20% of

components
 Often these components can be identified

with appropriate metrics (i.e. size, complexity)

SC12
Educator's Session 29

QA Activities:
Defect Reduction

DEFECT CONTAINMENT

SC12
Educator's Session 30

SC12
Educator's Session 31

Defect Containment:
Introduction

 Important for systems where the impact
of failures is substantial

 Not all faults can be eliminated (cost,
time)

 Rather than comprehensively removing all
failures, find ways to isolate the impact of
those that remain in the software

SC12
Educator's Session 32

Defect Containment:
Fault Tolerance

 Different from manufacturing

 Approaches
 Recovery Blocks

 Repeated execution
 If a failure is discovered, portion of execution is repeated

 N-Version Programming
 N versions of the software perform the same functionality
 Execute in parallel
 Overall algorithm prevents failures from propagating

 Does not focus on identifying and removing the

faults that cause the failures

SC12
Educator's Session 33

Defect Containment:
Safety Assurance

 Safety-critical systems: failure accident

 Address even low probability failures

 Safety Assurance techniques
 Hazard elimination – similar to defect prevention but

focused on safety critical issues
 Hazard reduction – similar to fault tolerance
 Hazard control – reduce severity or impact of failures
 Damage control – reduce severity of accidents

SC12
Educator's Session 34

QA Activities:
Defect Containment

INTRODUCTION TO TESTING

SC12
Educator's Session 35

Types of Testing

SC12
Educator's Session 36

Unit Testing Code

Integration Testing

System Testing

Design

Requirements

Acceptance Testing
Users

SC12
Educator's Session 37

Unit Testing
 What?

 Code units
 Varies with programming language

 Who?

 Developer

 What is the focus?
 Correctness of implementation
 Executable statements, control flow, data flow

 What type of testing techniques do we use?

 White-box
 Ad hoc (coverage tools)
 Input domain partitioning
 Control Flow / Data Flow

SC12
Educator's Session 39

Integration Testing
 What?

 Collection of components

 Who?
 Professional testers

 What is the focus?

 Integrating components to work together to accomplish functionality
 Each component is a black box
 Interfaces are tested

 What type of testing techniques do we use?

 White box – units are the components rather than statements
 FSM – model control passing between components

 Merged with System Testing?

SC12
Educator's Session 40

System Testing
 What?

 Entire system

 Who?
 Professional testers

 What is the focus?

 Overall function from customer’s point of view
 System is black box – external functions tested

 What type of testing techniques do we use?

 Function checklist
 FSM representing system functions
 Operational profiles

 Embedded systems?

SC12
Educator's Session 41

Acceptance Testing

 What?
 System

 Who?

 Professional testers

 What is the focus?
 Is the system reliable enough to release?
 What support will have to be provided?
 Not focused on fixing problems

 What type of testing techniques do we use?

 Usage-based statistical testing

SC12
Educator's Session 42

Functional vs. Structural

Black Box

White Box

Inputs Outputs

SC12
Educator's Session 43

Functional vs. Structural

 Individual elements
 Statements
 Functions
 Components

 Interactions of elements
 Sub-system
 System

 Inputs and outputs – functional

SC12
Educator's Session 44

Black Box (Functional) Testing:
Overview

 Observes external behavior of software

 What are some approaches we could
take?
 Ad hoc
 User scenarios
 Checklist
 Formal Models

SC12
Educator's Session 45

Black Box (Functional) Testing:
Process

 Planning
 Identify external functions to test
 Derive inputs and outputs
 Set quality goals

 Exit criteria
 Completion of test cases

 Execution

 Observe behavior
 Record problems
 Note execution information to aid in repair

 Analysis

 Compare results to expectations
 Testing oracle problem
 Leads to follow-up action to correct the problem

SC12
Educator's Session 46

White Box (Structural) Testing:
Overview

 Verifies correct implementation of software units

 What are some approaches?
 Ad hoc
 Results of functional tests (defects)
 Coverage

 What knowledge is needed?

 Programming (general)
 Tools
 Specifics of the code

SC12
Educator's Session 47

Stopping Criteria:
Coverage-Based

 Ensures some item has been covered

 Assumes that higher coverage equals
higher quality

 Approaches
 Checklist
 Partitions
 Finite State Machines

SC12
Educator's Session 48

Coverage Based Testing:
Process

 Define the model

 Check the model elements

 Define the coverage criteria

 Derive the test cases

Test Activities

 Test Planning

 Test Execution

 Analysis and Follow-up

SC12
Educator's Session 49

SC12
Educator's Session 50

Test Planning

 High level goal: Determine the test strategy
 Identify the types of testing
 Set the exit criteria

 Make the following decisions

 Overall objectives and goals
 Objects to be tested and focus

 Have to account for personnel

SC12
Educator's Session 51

Test Planning:
Test Case Creation

 What is needed?
 Inputs
 Outputs
 Dependencies

 How are they generated?

 Using inputs and outputs
 Replay of actual user scenarios

SC12
Educator's Session 52

Test Planning:
Test Suite Preparation

 What is a test suite?

 How are they created?

 Expensive should be maintained for
future use

SC12
Educator's Session 53

Test Planning:
Preparation of Procedure

 Ordering of test cases
 Dependencies
 Defect detection
 Problem diagnosis
 Natural groupings

 One test case should leave the system ready
to execute the next

 Assignment of personnel

SC12
Educator's Session 54

Test Execution:
Overview

 Major steps:
 Allocation of time and resources
 Running tests
 Analyzing results

 Prevent failed test cases from halting
execution

 Environment

Specific Approaches to Testing

 Control Flow Testing

 Partition-based Testing

 Usage-based Testing

 Data-flow Testing

SC12
Educator's Session 55

SC12
Educator's Session 56

Systematic Testing

 Drawbacks to ad hoc testing
 Lack of structure
 Likely to repeat
 Likely to miss

 One way to structure is to build a checklist

SC12
Educator's Session 57

Control Flow Testing:
Overview

 Model of the software
is a graph
 Nodes (entry, exit,

decision, junction,
processing)

 Links (outlinks, inlinks)
 Paths

 Use
 Build graph
 Define paths
 Choose inputs
 Check results

first

A

B

C E D

F

G

last

SC12
Educator's Session 58

Control Flow Testing:
Model Construction

 Using program code, build graph

 Processing nodes
 Assignment or function calls

 Decision

 If-then / if-then-else
 Loops

 Entry/Exit – first and last statements

 Creates a large number of nodes. How can we deal with

this?

SC12
Educator's Session 59

Control Flow Testing:
Model Construction

 Can also be done with black box testing
 How?

 Elements
 Processing nodes

 Some described action
 Branching nodes

 Some decision
 Entry/Exit

 First and last items

SC12
Educator's Session 60

Control Flow Testing:
Path Selection

 Structured CFG
 Only sequential

concatenation and
nesting allowed (no go-
tos)

 Unique entry and unique
exit

 Can be decomposed

into subgraphs – each
subgraph is a proper
CFG
 G = G1 ◦ G2 (-,G3)

P1
C1

P2 P3

J1
C2

P4

J3

C3

P5 P6

J2

P7

G1

G3

G2

SC12
Educator's Session 61

Control Flow Testing:
Path Selection

 With two graphs (G1,
G2); G1 has M paths
and G2 has N paths.

 Sequential combination
[G = G1 ◦ G2]
 M x N paths

 For nesting [G = G2

(G3)]
 M +N -1 paths

 Start with the prime

CFGs and work up

P1
C1

P2 P3

J1
C2

P4

J3

C3

P5 P6

J2

P7

G1

G3

G2

Control Flow Testing:
Model Construction

L1: input(a,b,c)
L2: d b*b – 4*a*c
L3: If (d>0) then
L4: r 2
L5: else_if (d=0)
L6: r 1
L7: else_if (d<0)
L8: r 0
L9: output (r)

SC12
Educator's Session 62

SC12
Educator's Session 63

Control Flow Testing:
Creating Test Cases

 If each decision is based on an
independent variable, then just choose
appropriate values
 Can use the idea of equivalence classes

 If decisions are not independent, some
branches may be eliminated as infeasible

 Some decisions may be based on
processing between decisions nodes –
may be hard to develop test cases

SC12
Educator's Session 64

Loops

 Loops complicate the CFT idea. Why?
 Could result in a lot of test cases
 May be unpredictable

 Parts of a loop:

 Loop body – accomplishes something; repeated a
number of times – represented by a node or a nested
CFG

 Loop control – decision point – represented by a
decision node

 Loop entry/exit – usually have only one – often are
the decision point

 Can be combined through nesting

SC12
Educator's Session 65

Loops

Prev

C?

B

Next

T
F

While (C) do {B}

I

C?

B

Next

T F

For (I; C; U) do {B}

U

Prev

SC12
Educator's Session 66

Loop Testing:
Difficulties

 When loops are nested, number of paths quickly grows
unmanageable

 Complete path coverage not possible, have to be selective

 Where do most problems occur?
 Loop boundaries
 Use equivalence class concepts

 What types of test cases do we need and why?

 Bypass the loop
 Once through the loop
 Twice through the loop
 Typical cases

SC12
Educator's Session 67

Loop Testing:
Difficulties

 Concatenation/Nesting of loops
 7 test cases for each loop (bypass, once,

twice, typical, max-1, max, max+1)
 7n for n concatenated loops

 How can we reduce number of test cases?
 Test the inner loops with all 7 cases
 Fix the inner loop with only 1 case and move

up the hierarchy (or randomly select one case
each time)

Specific Approaches to Testing

 Control Flow Testing

 Partition-based Testing

 Usage-based Testing

 Data-flow Testing

SC12
Educator's Session 68

SC12
Educator's Session 69

Partition Based Testing

 Benefits
 Increased coverage
 Reduced overlap

 Examples:

 Solve for root of ax2 + bx + c = 0

 Thermostat

SC12
Educator's Session 70

Partition Testing:
Theory

 A set S contains a list of unique elements

 Partition of S creates subsets G1, G2, … Gn such that
 Sets are mutually exclusive
 Sets are collectively exhaustive

 G1..Gn are equivalence classes if created based on

some definition of equality

 Properties
 Symmetric
 Transitive
 Reflexive

AUTOMATED TESTING TOOLS

SC12
Educator's Session 71

Automated Testing Frameworks

 Enable set of tests to be executed
repeatedly

 Family of tools
 jUnit
 cUnit
 … (xUnit)

 Demo
SC12

Educator's Session 72

jUnit

 Plug-in for Eclipse

 Demo of how to use:
 Create project
 In ‘src’ folder, create package
 Create new ‘source folder’ “test”
 In ‘test’ folder, create package
 Create new jUnit Test
 Run test

SC12
Educator's Session 73

cUnit

 http://cUnit.sourceforge.net

 Framework to create and execute tests

 Assertions
 CU_ASSERT
 CU_ASSERT_TRUE
 CU_ASSERT_FALSE
 CU_ASSERT_EQUAL
 CU_ASSERT_NOT_EQUAL
 …

SC12
Educator's Session 74

http://cunit.sourceforge.net/

cUnit:
Test Registry

 Repository of test suites and tests

 Using the test registry
 Create
 Clean up

 Adding tests
 Create a test suite
 Add tests to the test suite

SC12
Educator's Session 75

cUnit:
Running Tests

 Can run:
 All tests
 Individual suites
 Individual tests

 Modes
 Automated – non-automated / XML output
 Basic – non-automated / stdout output
 Console – interactive console under user

control
 SC12

Educator's Session 76

cUnit:
Demo

 Install cUnit
 ./configure
 make
 make install
 Rename library to ‘cunit’ and place in path
 Link the ‘cunit’ library in when compiling code

 Perform Unit Testing
 Write tests
 Execute tests
 Examine results (XML)

SC12
Educator's Session 77

TEST-DRIVEN DEVELOPMENT

SC12
Educator's Session 78

Test-Driven Development:
Introduction & Background

 Basic idea:
 Write automated tests
 Prior to developing functional code
 Small rapid iterations

 Part of the agile software development approach

 Short iterations
 Little up-front design
 Lightweight documentation
 Refactoring
 Pair programming

SC12
Educator's Session 79

Test-Driven Development:
Overview

 Focus on unit tests
 Traditionally written after code is completed
 In TDD tests are written before code

 Often require
 Test drivers
 Test stubs

 Can be automated or manual

 Can be performed by developers or testers
SC12

Educator's Session 80

Test-Driven Development:
Motivation

 Programming practice that instructs
developers to:
 Write code only if a test has failed
 Eliminate duplication

 Test-Driven Development
 Leads to analysis, design and programming

decisions
 Writing a test is one of the first steps in

deciding what a program should do (analysis)
SC12

Educator's Session 81

Test-Driven Development:
Definition

 From the Agile Alliance

 Test-driven development (TDD) is the craft of
producing automated tests for production code, and
using that process to drive design and programming.
For every tiny bit of functionality in the production
code, you first develop a test that specifies and
validates what the code will do. You then produce
exactly as much code as will enable that test to pass.
Then you refactor (simplify and clarify) both the
production code and the test code.

SC12
Educator's Session 82

Test-Driven Development:
Additional Thoughts

 Refactoring
 Additional step after coding
 Code becomes complex
 Tests still pass, but code is simpler

 Not a software development methodology

 Provides automated test

 Not thrown away
 Become part of the development process
 If a change breaks something that worked before,

developer knows immediately

SC12
Educator's Session 83

Test-Driven Development:
Process

SC12
Educator's Session

Story

Understand

Implement Story

Write Tests for Story

Run ALL tests

Result?

Rework

Fail
Pass

Next Story Test Last

Story

Understand

Add a Single Test

Add Code for Test

Run ALL tests

Result?

Rework

Fail

Pass

Next Story
Test First

Story
Complete?

No

Yes

84

Test-Driven Development:
Example Story

SC12
Educator's Session

Implement Story

Test A
Test B
A fails

Rework

B fails
Rework
A fails

Rework
A and B pass

Test Last

tim
e

Story

Test A
A fails

Implement A

A fails
Rework

A passes
Test B
B fails

Implement B

B fails
Rework

A and B pass

Test First

tim
e

Task A

Task B

85

Test-Driven Development:
Automated Testing

 TDD assumes the presence of an
automated testing framework

 Test Harnesses

 xUnit
 Lets users write tests to initialize, execute,

and make assertions about code being tested
 Tests can serve as documentation

SC12
Educator's Session 86

Test-Driven Development:
Evaluation

 Performed in Industry and Academia

 Industrial studies
 4 studies in small companies
 Measured defect density
 Results

 Programmers using TDD produced code that passed
18% - 50% more tests

 TDD programmers spent less time debugging
 TDD decreased productivity – but they wrote more test

cases
 SC12

Educator's Session 87

Test-Driven Development:
Challenges to Adoption

 Requires discipline by programmers

 TDD is misunderstood – many think it
addresses only testing and not design

 Does not fit every situation

SC12
Educator's Session 88

Test-Driven Development:
Example

 Design a system to perform financial
transactions with money that may be in
different currencies

 For example –
 If the exchange rate from My New Currency

to US Dollars is 2 to 1, then we can calculate
 5 USD + 10 MNC = 10 USD
 5 USD + 10 MNC = 20 MNC

SC12
Educator's Session 89

Example:
Starting Point

 How do we start?

 Write a list of things we want to test

 List can be any format, just keep it simple

 Example
 5 USD + 10 MNC = 10 USD if rate is 2:1
 5 USD * 2 = 10 USD

SC12
Educator's Session 90

Example:
First Test

 Second item is easier, start there
 5 USD * 2 = $10

 First write a test case

SC12
Educator's Session 91

Example:
Test Case Discussion

 What benefits does this provide?

 Target class plus some of its interface
 Design the interface of the Dollar class by

thinking about how we would want to use it

 Testable assertion about the state of the

Dollar class after a particular sequence of
operations

SC12
Educator's Session 92

Example:
Next Step

 Test case revealed some issues with the
Dollar class that must be cleaned up
 The amount is represented as an integer, making

it difficult to handle things like 1.5 USD; how do
we handle rounding of fractions?

 Dollar.amount is public; violates encapsulation
 Side effects?

 We first declared our variable as “five”, but after we
performed the multiplication, it equals “ten”

 Update Test List

SC12
Educator's Session 93

Example:
First Version of Dollar Class

 Our test will not compile
 What compile errors will we encounter?
 Fix compile errors
 Create skeleton of Dollar class

 Now our test compiles and fails

SC12
Educator's Session 94

Example:
Too Slow?

 Process
 Do the simplest thing to get the test to compile
 Now do the simplest thing to get the test to pass

 Is this process too slow?
 Yes

 As you get familiar with the TDD lifecycle you will gain
confidence and make bigger steps

 No
 Small simple steps help avoid mistakes
 Beginning programmers try to code too much before

compiling
 Spend the rest of their time debugging!

 SC12
Educator's Session 95

Example:
Make the Test Case Pass

 First do simplest thing to get test case to
pass

 The test now passes

 Now, we need to refactor to remove
duplication
 Where is the duplication?
 Hint: Its between the Dollar class and the test

case
SC12

Educator's Session 96

Example:
Refactoring

 To remove the duplication of the test data
and the hard-wired code of the times
method, we think the following
 I am trying to get at 10 at the end of my test

case. I’ve been given a 5 in the constructor
and a 2 was passed as a parameter to the
times method

 Let’s connect things

SC12
Educator's Session 97

Example:
First Version of Dollar Class

 Refactor Dollar class

 Now our test compiles and passes, and we
didn’t have to cheat!

 One TDD loop complete
 Update testing list
 Move on to next item

SC12
Educator's Session 98

Example:
Second Loop

 Address the “Dollar Side-Effects” item

 Next test case
 When we called the times operation on our

variable, “five” was pointing at an object whose
amount equaled “ten”; not good
 The times operation had a side effect which was to

change the value of a previously created “value object”
 This doesn’t make sense, you can’t change a $5 bill into

a $10 bill; the $5 bill remains the same throughout
transactions

 Rewrite test case
SC12

Educator's Session 99

Example:
Test Fails

 Won’t compile
 How do we fix this problem?

 Change the signature of the times

method; previously it returned void and
now it needs to return Dollar

 The test compiles but still fails – progress
 How do we fix this problem?

SC12
Educator's Session 100

Example:
Test Passes

 To make the test pass, we need to return a
new Dollar object whose amount equals the
result of the multiplication

 Test passes, cross “Dollar Side-Effects” off of

the testing list.

 No need to refactor here

 Move on to next test item
SC12

Educator's Session 101

C Example

 Write a program to calculate bowling score
using TDD

 Description
 10 frames, in each frame 2 balls to knock down

10 pins
 Spare – all 10 pins with two balls

 Bonus – get to add number of pins on next ball
 Strike – all 10 pins with one ball

 Bonus – get to add number of pins on next 2 balls
 10th frame – spare or strike entitles additional ball

rolls (no more than 3 total in the frame)
SC12

Educator's Session 102

C Example:
Test Cases

 Test a “gutter game” – all 0s

 Test “all ones” – hitting 1 pin with all balls

 Test “one spare” – 1 spare, plus bonus, the
rest 0s

 Test “one strike” – 1 strike, plus bonus, the
rest 0s

 Test “perfect game” – all strikes (12)
SC12

Educator's Session 103

HANDS-ON TIME

SC12
Educator's Session 104

Materials

 Updated slides and handouts available on
the web

 http://carver.cs.ua.edu/SC12_Tutorial/

SC12
Educator's Session 105

http://carver.cs.ua.edu/SC12_Tutorial/

References

 Jansen, D. and Saiedian, H. “Test-Driven Development:
Concepts, Taxonomy, and Future Direction.” Computer. Sept.
2005. p. 43-50

 Erdogmus, H., Morisio, M., and Torchiano, M. “On the
Effectiveness of the Test-First Approach to Programming.”
IEEE Transactions on Software Engineering. 31(5): 226-237.
March 2006.

 Currency example taken from
 Kenneth Anderson, Univ. of Colorado, Boulder

 Bowling example taken from

 http://www.slideshare.net/amritayan/test-driven-development-
in-c

SC12
Educator's Session 106

http://www.slideshare.net/amritayan/test-driven-development-in-c
http://www.slideshare.net/amritayan/test-driven-development-in-c

	Test-Driven Development
	Introduction
	Slides Available
	Motivating Example:�Mars Climate Orbiter
	Motivating Example:�Climategate
	Outline
	Software Quality
	Software Quality
	Definitions
	Quality Definitions:�Defects
	Quality Definitions:�Defects
	Quality Focus
	QA Activities:�Types
	Defect Prevention
	Defect Prevention:�Introduction
	Defect Prevention:�Education and Training
	Defect Prevention:�Education and Training
	Defect Prevention:�Formal Methods
	Formal Methods:�Axiomatic Approach
	Defect Prevention:�Other Techniques
	QA Activities:�Defect Prevention
	Defect Reduction
	Defect Reduction:�Introduction
	Defect Reduction:�Testing
	Defect Reduction:�What to Test
	Defect Reduction:�When to Stop Testing
	Defect Reduction:�Observations
	QA Activities:�Defect Reduction
	Defect Containment
	Defect Containment:�Introduction
	Defect Containment:�Fault Tolerance
	Defect Containment:�Safety Assurance
	QA Activities:�Defect Containment
	Introduction to Testing
	Types of Testing
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing
	Functional vs. Structural
	Functional vs. Structural
	Black Box (Functional) Testing:�Overview
	Black Box (Functional) Testing:�Process
	White Box (Structural) Testing:�Overview
	Stopping Criteria:�Coverage-Based
	Coverage Based Testing:�Process
	Test Activities
	Test Planning
	Test Planning:�Test Case Creation
	Test Planning:�Test Suite Preparation
	Test Planning:�Preparation of Procedure
	Test Execution:�Overview
	Specific Approaches to Testing
	Systematic Testing
	Control Flow Testing:�Overview
	Control Flow Testing:�Model Construction
	Control Flow Testing:�Model Construction
	Control Flow Testing:�Path Selection
	Control Flow Testing:�Path Selection
	Control Flow Testing:�Model Construction
	Control Flow Testing:�Creating Test Cases
	Loops
	Loops
	Loop Testing:�Difficulties
	Loop Testing:�Difficulties
	Specific Approaches to Testing
	Partition Based Testing
	Partition Testing:�Theory
	Automated Testing Tools
	Automated Testing Frameworks
	jUnit
	cUnit
	cUnit:�Test Registry
	cUnit:�Running Tests
	cUnit:�Demo
	Test-Driven Development
	Test-Driven Development:�Introduction & Background
	Test-Driven Development:�Overview
	Test-Driven Development:�Motivation
	Test-Driven Development:�Definition
	Test-Driven Development:�Additional Thoughts
	Test-Driven Development:�Process
	Test-Driven Development:�Example Story
	Test-Driven Development:�Automated Testing
	Test-Driven Development:�Evaluation
	Test-Driven Development:�Challenges to Adoption
	Test-Driven Development:�Example
	Example:�Starting Point
	Example:�First Test
	Example:�Test Case Discussion
	Example:�Next Step
	Example:�First Version of Dollar Class
	Example:�Too Slow?
	Example:�Make the Test Case Pass
	Example:�Refactoring
	Example:�First Version of Dollar Class
	Example:�Second Loop
	Example:�Test Fails
	Example:�Test Passes
	C Example
	C Example:�Test Cases
	Hands-On Time
	Materials
	References

