
Towards Applying Complexity Metrics to Measure
Programmer Productivity in High Performance Computing

Catalina Danis, John Thomas, John Richards, Jonathan Brezin, Cal Swart, Christine Halverson,

Rachel Bellamy, Peter Malkin
IBM, TJ Watson Research Center

PO Box 704 Yorktown Heights, New York 10598 USA
1 914 784 7300

{danis, jcthomas, ajtr, brezin, cals, krys, rachel, malkin} @us.ibm.com

ABSTRACT
In this paper, we motivate and position a method for measuring
the complexity of programming-related tasks. We describe this
method, Complexity Metrics (CM), and give a brief worked
example from the domain of High Performance Computing
(HPC). We are using the method to help determine the
productivity impact of new tools being developed for HPC by
IBM. Although we argue that the CM method has certain virtues,
we acknowledge that it is a work in progress. We discuss our
strategy of complementing the CM method with knowledge we
derive from applying other methods to better explore the complex
issue of productivity. We end the paper with a discussion of some
of the open issues associated with the CM method and plans for
future work.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – complexity measures.

General Terms
Measurement, Design, Human Factors.

Keywords
Complexity, metrics, measurement, productivity.

1. INTRODUCTION
The increased hardware performance of computing over the past
few decades, and more recently the realization of highly parallel
computing, have enabled the possibility of significant advances in
a wide variety of application domains such as weather forecasting,
modeling of complex physical objects, airplane design,
biochemical engineering and data mining. Yet, that promise has
not been fully realized largely owing to the difficulty of
programming high performance computers which are typically
highly parallel. It is well known that even serial computer
programming is a very difficult and error-prone task. Some
estimates are that between 50 and 75 % of overall effort and time
in software engineering is devoted to the prevention, detection,
and repair of errors in serial computer programs [13]. Dealing
with highly parallel computing systems significantly increases the
difficulty of prevention, detection and repair of errors.
The domain of HPC, often called scientific computing, is very
broad both in terms of the kinds of codes developed and the users

involved. Types of codes developed range from so-called
“kleenex codes” which are typically developed by a single
individual in a short period of time in order to try out an idea for
an analysis and so are used only once, to multi-module codes
developed over decades by large teams distributed in time and
space. The large HPC codes are typically developed by multi-
disciplinary teams that include both domain scientists, for
example climate scientists knowledgeable about the atmosphere
or about the behavior of clouds, and computational scientists, such
as experts in data structures or in the communications
characteristics of a particular HPC system.

In recognition of the perceived gap between the performance
being delivered by parallel machines and the capabilities of
programmers to harness the performance to solve scientific and
business problems, DARPA sponsored the High Productivity
Computing Systems (HPCS) program. This program which began
in 2002, involved top vendors of HPC systems in a three-phase,
eight-year effort to not only develop petascale machines but to
also significantly improve the productivity of programmers who
need to use such machines at scale. We are employed by IBM,
one of two finalists in this program along with Cray, and are
charged with measuring the productivity impact of the
programmer tools that IBM is developing under the HPCS
program. The program requires the vendors to demonstrate
attainment of specific productivity enhancement targets
attributable to the use of the vendor’s tools (ranging from IDE’s,
to memory management tools to new programming languages) in
order to satisfy program commitments.

Productivity is a complex construct to conceptualize, let alone to
measure. Previous approaches have adapted constructs derived
from economic theory to define productivity on an organizational
level [e.g., 27]. Such approaches suffer from being highly abstract
and fail to provide guidance as to how measurements for the
various terms are to be produced. Since it is impossible to
examine anything but the smallest of codes from start to finish,
and since code development in HPC is skewed towards multi-
module, long-lived codes, defining tasks for productivity
assessment requires developing a strategy for sampling sub-tasks
from the code development process for study. To this end, the
HPCS community that organized around the DARPA program
collectively defined “workflows” to specify the work of HPCS
programmers and system administrators (we limit our focus here
to code development scenarios). The workflows are high-level,

idealized descriptions of the component tasks that comprise, for
our current purpose, code development, including writing from
scratch, debugging, optimizing and porting code. These
workflows provide a shared landscape around which researchers
can discuss the topic. We have undertaken observations of
programming behavior in order to generate the greater detail that
is necessary to study programmer productivity with our method.

Our approach, the CM modeling approach, is to define
productivity for an idealized, expert individual in terms of
performance in relatively small, individual tasks and to build up
organizational productivity based on estimates of the frequencies
with which the “measured” tasks occur in the work of
programmers and weighted by the distribution of the skill level of
programmers. The CM method highlights three aspects of task
performance: the number of actions needed to complete a task, the
number of data items the individual operates on while completing
the task and the number of task context switches required in order
to complete the task. These three dimensions are implicated in
productivity because of their impact on the amount of time to
complete a task and on the opportunity for errors they occasion.
The argument is that task complexity is inversely related to
programmer productivity.

The CM method we discuss in this paper is an analytic, rather
than an empirical, approach. While the basic outlines of the
method are broadly consistent with research in psychology related
to task performance, we are engaging in targeted empirical
investigations to better ground the method in empirical findings.
Furthermore, the CM method is only one of a group of approaches
we are using to try to quantify the productivity impact of our
tools. As we discuss below, we are using these multiple methods
to triangulate on our productivity assessments.

2. RELATED WORK
A number of related approaches have been advanced in both
computer science and psychology. In general, the approaches
stemming from work in computer science have attempted to
measure productivity in the context of programming. These
include Lines of Code (KLOCs), function points [1], cyclomatic
complexity [22], software science [14], and COCOMO [4]. While
each of these approaches captures some of the complexity of
software, they were primarily motivated by concerns such as an
attempt to compare programmers, to predict how long a project
would take or to compare the inherent difficulty of different
programs rather than to measure the difficulty of writing
essentially the same program with or without various tools. It is
this latter motivation which primarily underlies our own work.

In psychology, a variety of methods have been proposed to
analyze and measure the complexity of cognitive tasks, of which
programming serves as an example. These methods could
theoretically be relevant to measuring the impact of tooling on
programming. Although a full examination of these approaches is
beyond the scope of this paper, it is useful to briefly review some
of them in order to position our own approach. In order to
understand these, it is useful to distinguish two related but
separate threads of work. On the one hand, there are aspects of
programming which often require creative problem solving and
therefore methods arising from modeling of learning and problem
solving are potentially relevant. On the other hand, programming
also often requires activity that is fairly routine, at least for the
experienced programmer, and here, approaches of modeling akin

to the work of Card, Moran, and Newell [7] are potentially
relevant.

Methods more appropriate to modeling the routine aspects of
programming include, notably, GOMS [12, 16] and EPIC [19].
The human being, when viewed as an information processor, is
obviously quite complex and applying such models to specific
situations is typically time-consuming. In cases where an
economically significant number of users will be using a product
for a significant amount of time, such approaches can be quite
cost-effective despite the up-front modeling costs [12]. For
example, an analysis that identifies the potential to save a few
seconds off of a process that is done by several thousands of
workers can translate into significant savings. However, in other
cases, such as HPCS where systems and applications are
developed for a small number of users, an analysis of such
precision is problematic. To address this issue, a tool, called
CogTool [8] has recently been developed to make the construction
of such models much easier. We are exploring the possibility of
using CogTool to build models for routine programming tasks.
However, in this paper we present an approach which is motivated
by some of the same psychological research but is simplified to
include only three major and relatively simple predictors of
behavior: number of steps, context shifts, and memory load.

3. OUR OTHER APPROACHES TO
MEASURING PRODUCTIVITY
3.1 Observations
As background for the more focused work of CM, we have carried
out a series of “real-world” observations, interviews and surveys
with HPC programmers and individuals in various “support” roles
such as consultants and help desk personnel [9, 15]. Such work
provides grounding for the definition of ecologically valid tasks
for modeling with the CM method. It also provides data that will
enable us to weight the tasks we will model based on their overall
contribution to programmer productivity.

3.2 Interviews with tool makers
Because the suite of tools that is being developed in IBM to aid in
the various tasks of parallel programming is extensive, we needed
to identify the tools that would be expected to provide the highest
productivity enhancement potential to programmers. To this end,
we conducted a series of interviews with each of the tool
developers. Based on these interviews, we then created a
spreadsheet relating tools, availability, users, and workflows.
This provides guidance to us for focusing our CM work where it
is most appropriate.

3.3 Experiments
In addition, we have collaborated with various DARPA HPCS
“mission partners” (i.e., labs in the United States that are potential
users of the systems that will be produced through the program) to
identify some representative HPC tasks. We have used somewhat
simplified versions of these to gather empirical data about
productivity, initially focusing on tools available at the start of the
HPCS program in 2002 (hereafter, the 2002 baseline) and
eventually comparing these to the tools that will be available at
program completion in 2010. In addition to providing some direct
empirical data about the overall productivity possible with the two
sets of tools, these studies also provide further grounding for
estimating the frequency of tasks as described above. We
measure both time to completion and quality of code.

3.4 Use of Workstation Instrumentation
Our empirical work relies on the instrumentation of workstations
and development environments for the automatic capture of
programmer behavior at a fairly fine grain. In a previous
empirical assessment of 27 novice programmers done in
collaboration with colleagues at the Pittsburgh Supercomputing
Center [10], we used a tool they developed called SUMS [24]. In
our more recent work aimed at assessing the 2002 baseline, we
have been using an open-source tool called Hackystat developed
by Philip Johnson and his colleagues [17].

Ideally, productivity assessments would rely on direct
measurements of programming in the “real world,” documented
through workstation instrumentation and supplemented with
human observation. However, the large-scale nature of typical
HPC codes makes this impossible. Even if one were to follow a
code development from start to finish, over the years or decades
required, the results would preclude generalization and thus be of
limited use.

4. COMPLEXITY METRICS METHOD
The topic of psychological complexity, its definition and
measurement, and its relationship to related concepts such as
uncertainty, stress, and productivity is itself a wide-ranging and
complex topic far beyond the scope of this paper (See Thomas &
Richards [28] for a more thorough review). The complexity model
we are focused on in this paper was originally based on the work
of Brown, Keller and Hellerstein [6] and has been found useful
despite the simplifications from full-blown psychological theory.
This model measures complexity along three dimensions: the
number of steps in a process, the number of context shifts, and the
working memory load (that derives from data operations) required
at each step. It is capable of giving overall metrics of complexity
for completing a given process with different tooling and is also
capable of locating those particular steps that are particularly
complex in terms of memory load. In this section we give a brief
rationale for focusing on these three contributors to complexity.

4.1 Rationale for Number of Steps
One premise of the CM method is that the number of steps in a
process can give an estimate of task complexity. We argue that
the more steps that are required, the greater the complexity and
chances of error for the programmer and consequently, the lower
the productivity.

Of course, not all “steps” are equal and so using the sheer number
of steps as a metric is somewhat limiting (we will expand on this
limitation later). However, in most of the tasks we have studied
so far (installation, configuration, simple administration and
simple component programming and debugging tasks), the steps
can be defined fairly objectively in terms of the task requirements
within a given style (e.g., a graphical user interface (GUI) vs. a
command line interface (CLI)). In GUI’s, every new dialog panel
or screen is considered one step. In line-oriented interfaces, every
“Enter” is considered to mark the end of a step. These conventions
presume some level of familiarity with the interfaces (which
seems an appropriate assumption in the context of HPC).
Typically, in comparing alternative products or various versions
of one product, the “steps” are fairly similar in “size” (except as
captured in the other two metrics; i.e., memory load and context
shifts).

There are two additional dissatisfactions or shortcomings with the
model as applied to straight-line processes. One is that it does not
capture the complexity of the reading that is required either on the
screen or with accompanying documentation in order to carry out
a step. The second is that it does not measure how much
background knowledge is required to decide which items need to
be noted for future reference. (As expanded upon in Section 6, we
are working to incorporate these nuances into the model).
Nonetheless, in general, as processes gain more steps, there is a
roughly monotonic increase in the chance of an error and
certainly, an increase in time. As these tasks are performed in the
real world, each additional step also increases the probability of
being interrupted by some other task. Although the impact of
interruptions is complex, they typically increase the chance of
error and require the user to use some added time to recover state.

4.2 Rationale for Context Shifts
Context shifts were originally defined [6] in terms of computing
contexts (e.g., server vs. client or operating system vs. data base).
We have kept such changes as context shifts but broadened the
definition to include shifts between applications or between
installation components. The rationale is that if an installation
requires the installation of three sub-components, these
components often have somewhat different appearances and
conventions.

Context shifts can be directly disruptive to working memory by
requiring time and mental effort to orient to the new context. In
addition, different contexts often employ different conventions
and this can cause interference resulting in longer latencies, a
greater chance of error, or both. For example, in some
applications, clicking on the little red X in the upper right hand
corner closes that window while in other applications, that same
action may close the application (and all subsumed windows). In
some applications, a SAVE command will utilize the user’s
current place in the hierarchy to determine where something will
be saved, while other applications will not. Shuttling between
these variations in conventions increases the chances of error.
Even if no errors occur, the requirement to mentally “keep track”
of which kind of application one is currently in probably impacts
working memory load. Again, another chief advantage of using
context shifts is that it is relatively easy to objectively obtain from
the detailed task description of doing a task in a certain style.

4.3 Rationale for Working Memory Load
Working memory load [23] is concerned with the data used in a
process and how it must be manipulated by the user. Working
memory load is increased whenever the user sees something on a
screen that must be remembered and used for some future step.
Again, in detail, we know that the actual working memory load
will depend on the type of item that needs to be stored and on the
user’s experience and strategies. However, as a first
approximation, each new “item” that the user must attend to and
remember increases felt complexity as well as increasing the
chance for error. Even without error, it takes longer to recover a
particular item from working memory if there are more items
being retained. While this memory load is probably an important
factor in task complexity of any sort, it is likely to be particularly
disruptive in programming tasks which often require the
programmer to mentally track an inordinate number of items. We
should note that this “working memory load” is different both
from the much more limited primary memory (for example, the
ability to repeat a phone number that was just spoken by another

person) and from what is stored in “long term memory” (for
example, memory for well learned information).

4.4 Programming and Complexity Metrics
One of the main problems facing researchers interested in
quantifying the productivity value of tools for the HPCS
programmer (or for any programmer) is to define programming
tasks that are both representative and tractable for measurement.
This is true whether one is observing actual programmers or
modeling their performance using techniques such as the one
discussed here. In the portion of our work based on programmer
observation we are focusing on the creation of fairly small
“compact codes” proposed by the HPCS community as
representative (the Scalable Synthetic Compact Applications, see
[3]). In the work described here, we begin by modeling the more
routine and repetitive aspects of code development (such as
creating a new project, and looking up API documentation),
gradually expanding our coverage to more creative parts of the
programming task. We believe that the more creative parts of
programming may benefit from another approach such as
information foraging [21, 25].

5. BRIEF WORKED EXAMPLE
We illustrate the use of the CM method by analyzing the behavior
required of a programmer seeking help on an MPI function he or
she is incorporating into a program. In this example we contrast a
hypothetical programmer Sam using the VI editor combined with
a browser, with a hypothetical programmer Allie using the open-
source ECLIPSE based PTP/PLDT IDE [11].
We begin the analysis with Sam looking at a VI editing session
containing his partially written code. He has just typed the MPI
function MPI_Reduce which he will use to collect the results from
calculations done on many processors into a single value, but he
does not recall the exact parameters the function utilizes. To get
help he will go to a site on the web that has a tutorial on the MPI
library and get the details he needs. The following are the actions
he might produce in order to find the information and incorporate
it into his program. Of course, different programmers will have
different techniques to accomplish these same goals, for example
going to manpages or books.
In this example, we assume that Sam already has a browser started
on his workstation desktop. In Table 1, we see that his first action
requires that he change context from his edit session to the
browser session. This involves clicking on the browser icon (of
the seven assumed to be) on his workstation task bar. Note that
the number of alternatives among which he must choose is data
dependent (discussed below under Open Issues) and will therefore
vary by individual programmer. He then selects the “bookmarks”
menu item from the menu bar, which is the fifth of seven items
arranged on the Firefox browser menu bar. We then make another
assumption, namely that Sam has the MPI help site bookmarked
and thus does not need to search for a site that might provide
appropriate help. He then scrolls down the list of bookmarks (the
size again varies by individual) and clicks on the MPI help site
(we have arbitrarily identified this as the 17th item in a list of 501).
He then has to find the MPI_Reduce function for which he needs
help. He might do this in a number of ways. We assume that he

1 Data details such as the number of alternatives for an entered

data item do not currently impact the modeling results though
they are tracked.

types the function name into a search field. He then clicks on the
link provided him and arrives at the appropriate help page. He
reads the help page and must retain the information until he can
enter it into his editing session. (Alternatively, he might use copy
and paste to accomplish this goal.) After reading it, he returns to
his edit session and in his final action, completes specifying the
parameters for the MPI_Reduce function.

Table 1: Actions, context shifts, data items and memory load
to complete help task using the VI editor and an MPI help site
on the web.

ACTION

Context
Shift?

DATA

MemoryLoad?

Change context
to browser
window by
clicking on
browser icon

✔ Select one of
seven icons on
task bar

✔ (name of
function for
which help is
needed)

Select the
“bookmarks”
menu item

 Select fifth item
on browser
menu

Select the MPI
help site

 Click on 17th of
50 items

Find the
MPI_Reduce
function

 Type in
MPI_Reduce
and press enter
key

(end of
memory load
retention period
for function
name)

Go to the
MPI_Reduce
page

 Click on
MPI_Reduce
link

(Read help on
MPI_Reduce –
not counted as
action)

 ✔(name of 7
MPI_Reduce
parameters)

Place focus on
window with VI
session

✔ Click on visible
shell window

(Enter
parameters for
MPI_Reduce –
not counted as
action)

 (end of
memory load
retention period
for parameters)

Table 2 shows the comparable actions for our hypothetical
programmer Allie who is using the Eclipse PTP/PLDT IDE to do
her programming. Like Sam, she has just typed the MPI function
MPI_Reduce when she realizes she needs help to complete the
specification. Her first action is to select the MPI_Reduce
function name in her code. She then presses the F1 key on her
keyboard to activate context-sensitive help. This opens a view in
the IDE that lists the function name. At this point, in her third and
final action, Allie clicks on the function name that is listed on the
help view pane and the help content is made visible. When Allie
returns to writing her code, placing her cursor on the MPI_Reduce
function activates “hover-help” which lists the function name and
its parameters, making it easy for her to enter the necessary

parameters without having to commit them to memory or copy
and paste them from the help materials.

Table 2: Actions, context shifts, data items and memory load
to complete help task using the Eclipse PTP IDE.

ACTION

Context
Switch?

DATA

Memory
Load?

Select the
MPI_Reduce
function

 MPI_Reduce
string

Invoke help
through keyboard

 Cntrl + Function
1

(Read help on
MPI_Reduce)

(Enter parameters
for MPI_Reduce)

In the case of the PTP/PLDT tool, context-sensitive help allows
the programmer to obtain additional information by merely
selecting a string. The Eclipse PTP system uses the current
context to automatically perform some of the necessary navigation
for the user. In the comparable CLI case, the user must also
explicitly remember what they need help on (or use the
clipboard), then find the relevant help, and finally navigate back
to the code (either remembering relevant information between
steps, writing it down, or using more copy and paste steps).
These additional steps and increased memory load will tend to
increase time and errors. In this particular CLI case, we modeled
going to a website to find the relevant information. We made the
conservative assumption that the user had already bookmarked the
correct file and had no trouble finding it or finding the correct
function within the file. Even with this assumption, traversing
back and forth to a browser window adds additional steps and
increases memory load. In this case, the user had to retain seven
parameters in memory; in actuality this memory load will vary by
user behavior2. In this example, the user working in the CLI
environment had to produce six actions, undergo two context
shifts, produce six data items and retain two data items and retain
data items in memory on two occasions. The comparable
numbers for the IDE user are two actions, two data items and no
context shifts nor any instances of memory load.

6. OPEN ISSUES
While we believe that CM is a promising approach for assessing
the productivity of programmers using various HPC tools, we
recognize that as a work in progress many open issues remain. In
the remainder of the paper we discuss three that we are working
on and discuss paths we are exploring to resolve them.

6.1 Levels and Types of Complexity
The problem of assessing the complexity of the tools our IBM
colleagues are developing to support programmer productivity is
made more difficult because multiple sources of complexity

2 As noted above, we could also have modeled the user’s behavior

to have copied and pasted the function parameters instead of
retaining them in memory.

contribute to the task-tool-user nexus that we must model. We
have identified four types of complexity that are present in any
measurement and discuss here how each impacts the measurement
task: task complexity, tool style, tool implementation detail, and
data complexity.

The first source is task complexity. Task refers to the work the
programmer has in mind when he or she sits down to work, for
example developing a parallel implementation of the Smith-
Waterman algorithm for local sequence alignment, adapting an
existing program for modeling explosions to work with a new
material or debugging code. While the range in possible task
complexity is great, we hold this source of complexity constant in
our comparison. That is, we look at the same task being done
using two different tools, namely examples of tools used in 2002
and tools newly developed for the 2010 timeframe.

The tools we are testing contribute two sources of complexity.
One source is the tool style or approach embodied in the tool, for
example, a CLI versus a GUI. An example might be the use of a
CLI editor such as VI or Emacs compared to an editor developed
for embedding within an integrated development environment
(IDE) like Eclipse. The complexity added by the tool style is the
primary target of our measurement. However, it is further
complicated by the presence of complexity due to the particular
tool implementation details. This source of complexity has to do
with how well the tool is designed rather than being an intrinsic
property of the tool style. This is a type of complexity we have
previously described as being “undue” or “gratuitous” as
contrasted with “intrinsic” complexity [28] because it typically
derives from poor design and implementation (Fred Brooks [5]
referred to this as “accidental complexity.”). Much of the
gratuitous (or accidental) complexity is removed from tools
through the iterative process of user feedback and tool re-design.
In this regard, our measurements of the 2010 tools can be
expected to be at a disadvantage compared to the baseline tools
since many of the 2002 suite of tools will have matured through
use and thus would be expected to have lowered gratuitous
complexity compared to their initial releases.
A final issue in the application of the CM method derives from the
data conditions under which the tool is tested. This is because the
method takes into account the memory load involved in using a
tool and one source of memory load is the programmer’s
operations on data. For example, generating a data item, such as
the path where a file is saved, and then having to recover that path
in a later step is said to place a memory load on the programmer.
While this source of complexity, which is particular to the usage
of the tool, can be held constant in the tool comparisons we do, it
could contribute differentially to the overall complexity in many
of the measurement situations we might encounter (e.g., like the
opening of a file). In the example case, the user of the CLI
environment might be generating a data item to specify the file
from memory while the GUI user will be selecting it from a list of
files. In either case, the programmer’s task will be less complex
when needed files are selected from a shallow hierarchy
containing a small number of items compared with a deep
hierarchy containing a large number of items. In general, we
believe well-designed GUI’s probably minimize the impact of the
number of the data items relative to CLI environments but in our
comparisons, we try to make comparisons as “apples to apples” as
possible.

The indirect value that the CM tool provides for developers is
primarily attributable to its usefulness in identifying the gratuitous

complexity that derives from poor design. Used as an analytic tool
by the developers it provides the opportunity for the surfacing of
usability problems (e.g., inconsistency in implementations of the
“same” action in two different contexts) that have been built into
the tool. In addition, it may help designers and developers
become more conscious of how data conditions also contribute to
the complexity of the user’s task. In some cases this might be
amenable to re-design (for example, rendering a selection as an
auto-completion dialogue instead of as a pick list). We would
expect the former to be less sensitive to increases in data
complexity than the latter.

6.2 What unit of work equals an action?
In our discussion earlier, we noted that adopting various heuristics
has enabled us to apply the CM method consistently because it is
based on relatively simple definitions of what, for example,
constitutes an action. Adopting the heuristics was a temporary,
tactical decision made in order to allow us to apply the metric and
thus gain experience with it.

A deeper conceptual issue related to what constitutes an action is
illustrated with the following example from our experience in
using the metric. Two of us (CD & JCT) were engaged in
assessing our inter-rater reliability in applying the metric in
preparation for training a third member of our team (PM) in its
use. In the course of making some assessments, we first discussed
various heuristics we wanted to apply including the
aforementioned one menu choice equals one action. In the
subsequent individual validation test measurements which
included opening a file by traversing three levels of a menu
hierarchy, a common action in programming tasks, one of us
departed from the heuristic and coded it as a single action rather
than three. In our subsequent debriefing he noted that by the time
of coding, that portion of the task was quite familiar so he thought
of it as a single action.

This raises the issue that expertise with using a tool or a style of
tool has on the perceived complexity of the tool. Clearly, we
found the perceived complexity of a sequence of actions
decreased as we repeated that task component several times over
the course of a short period of time. Thus, we realize that we need
to include in our model a way for accounting for differential
expertise with a tool. So, an experienced programmer might prefer
to use keyboard shortcuts in a GUI and designers might be
encouraged to provide them.
The previous example raises personal style as another contributor
to the determination of what constitutes an action. Another
member of our team (CS) is a very experienced programmer who
repeatedly impresses his lab mates with his acts of computing
prowess. Nonetheless, he traverses directory hierarchies one level
at a time, frequently followed by an extra action to confirm his
previous action (e.g., listing the contents of the directory he
entered). He wants the feedback to avoid mistakes that could
result in a great deal of work to correct (e.g., installing a multi-
module system such as Eclipse in the wrong place in his directory
structure). Consequently, individual differences in work style also
impact the actual use of a tool and we need to consider how we
might bring such a factor into our measurements. This factor can
also interact with tool style, such that a tool which gives relatively
little feedback following user action would likely lead to more
defensive tool use.

6.3 Number of Steps: Is more necessarily
bad?
In general, the interpretation of results from application of the CM
is that a process that requires more steps to complete has greater
complexity than one with fewer steps and therefore the one with
fewer steps is “better” from the standpoint of productivity. This
argument is built primarily on the increase in the chance of errors
and opportunities for interruptions as well as on the additional
time required to complete the process. The question to address
here is whether more steps is necessarily bad.

An example will set the stage for this discussion. Imagine a
programmer using an IDE to start a new project. In an Eclipse
IDE, he would set several items, including the type of project he is
starting, give the project a name and which compiler to use and its
location. Now imagine two alternate, albeit somewhat extreme,
implementations of the user interface. In the first case, all the
fields for which the user has to specify a value appear on a single
screen. In addition, the dependencies that exist between fields
(e.g., deriving from Eclipse) are not indicated; instead the user has
to infer them because seemingly at random, certain values for
certain fields become unavailable for choosing. Now contrast this
with a the second case, where each field is presented on a separate
dialogue, but it comes largely pre-filled and simply requires that
the user accept the default in moving across dialogues to complete
the task.

In this example, it is not absolutely obvious that the second case,
even though it has a potentially much larger number of actions is
of greater effective (as opposed to measured) complexity than the
first. True, the increased number of actions increases the
opportunity for interruption and error, but since the data values
are all or mostly all defaults, this task is very simple and may not
increase the effective complexity for the user. In addition, the
greater number of steps may not produce an increase in time since
a single action that is mapped on to a multi-field dialogue with
hidden dependencies may require just as much time or more than
moving through a series of simple dialogues.

The larger number of steps may also not necessarily be bad from
the standpoint of individual styles and the experience they
embody. As noted above, some programmers have developed a
cautious style, taking extra actions to confirm that a mistake has
not been made based on their experience that some errors can be
very costly to recover from. Interface styles might be
differentially suited for a cautious style. One implication would
be that applying the CM might require that we model a suite of
users, including cautious ones. Furthermore, the need for
providing state feedback has been discussed in the HCI literature.

7. FUTURE WORK
We intend to address open issues, of which the above three are
important examples, by leveraging the work we are already doing
in the empirical assessments of programming behavior and by
also carrying out some additional targeted lab experiments. As
we noted earlier, we are gathering data that allows us to examine
programmer behavior as they code real world examples of
problems. In addition to allowing us to assign weights that enable
us to calculate the contribution of certain tasks to overall
productivity, these observations will help us identify the
alternative ways that programmers of different skill levels use to
complete a task (e.g., remembering a set of parameters vs.

copying and pasting the information from one source to the target
environment). It is very important for us to be able to ground the
tasks we model in real world programmer behavior since there are
multiple alternative ways to reach any goal.

We are also planning on using targeted empirical investigations to
make further progress towards grounding the CM method in
actual programming practices. This is particularly important in
regards the question of what constitutes an action. One way that
we plan to explore this is through lab studies in which we have
programmers explain a task (such as starting a new project) to
other programmers. In our studies we plan to make use of an
established phenomenon in language studies in which a person
explaining something to someone takes into account the
knowledge level of their interlocutor. By varying the skill level of
both the “teacher” and the “student” we should be able to discover
whether expertise and other factors have an impact on the unit of
behavior that constitutes an action.
The current model of behavior that is assumed by the CM method
is quite simple and our empirical work is also serving to identify
places where it must be extended. For example, in addition to
considering skill level in the models, we also need to consider the
complexity of data and the contribution of time to complete a task.
We noted that the behavior models to which we apply the method
presently consider data operations in the most rudimentary
manner. We simply note if an item of data must be retained in
memory for later utilization, but there are additional factors to
consider. For example, as our brief worked example showed, there
are tradeoffs between memory load and additional actions. We
are further planning to explore how different types of data
conditions (e.g., selecting among 2 or 50 alternatives, self or
other-generated data items) and expertise in the task impact
memory load.

And, finally, time is an obvious parameter that must be added to
the model since the time to complete a task is a fundamental
measure of how productive an individual is. One way we are
considering bringing time into the model is to measure the impact
of different tools on the completion of the more routine and
repetitive tasks involved in programming on the completion of the
more creative parts of the programming task, for example the
coding of a complex procedure. The former more routine work is
amenable to modeling and we are wondering if the complexity of
completing such tasks might have a “carry-over effect” on the
more creative aspects of programming which are not as generally
amenable to our current method3. Does, for instance, the greater
working memory load typically imposed by CLI style tools make
it more difficult to imagine all the pathways of a complex
algorithm? In closing, we believe that the CM method has
promise and we are excited about the opportunities for expanding
it and putting it on a sounder empirical basis.

7.1 The Iterative Development of the Tool
Although we argue that the CM approach is less time-consuming
and requires less training than many alternatives such as building
detailed user models or carrying out extensive user studies, the
approach still needed to be supported with tooling. The original

3 Selected parts of coding operations can be measured with the

method, for example, where new functionality has been
developed for operations such as barrier matching that is
required for coordinating operations on multiple processors.

model we adopted took a detailed XML description of the task as
input. We thought it unlikely that developers would use an
analytic method that required this. Therefore, we developed a
GUI tool to allow users to define the key model elements -- tasks,
data, action steps, context switches, and memory load -- without
having to directly write XML. The tool was used by a small
group of people for some months. Interviews, observations, and
spontaneous comments were all used to identify usability issues
that were corrected in a later version. Later, a complete re-write
was carried out based on further use on a number of different
tasks by a number of different users. We will continue to iterate
on the tool in order to minimize the effort required and to
maximize the reliability of the method.

More broadly, we believe these same tools can have wide
applicability within the software development process. For
instance, since we are using a “simple” modeling approach,
developers of any tool, system or application should be able to
create a useful productivity estimate relatively quickly and easily
(compared with either detailed modeling or extensive user testing
in real contexts). Indeed, we have already used variations of this
technique to provide feedback to developers to determine whether
successive iterations of an installation procedure show increased
or decreased complexity, to help locate sources of particularly
complex interactions and to compare overall complexity among
competing options.

8. ACKNOLWEDGEMENTS
This work was in part supported by the DARPA contract
HR0011-07-9-0002. We also thank two anonymous reviewers for
their comments.

9. REFERENCES
[1] Albrecht, A. J. (1979) "Measuring application development

productivity," in Proc. Joint SHARE/GUIDE/ IBM Appl.
Development Symp., Oct. 1979, pp. 83-92.

[2] Adamcyzyk, P. D. and Bailey, B. P. (2004). If not now,
when? the effects of interruption on different moments
within task execution. Proceedings of the ACM conference
on human factors in computing: CHI 2004. New York, NY:
ACM.

[3] Bader, D. A., Madduri, K., Gilbert, J. R., Shah, V.,
Kepner, J., Meuse, T., and Krishnamurthy, A.
http://www.ctwatch.org/quarterly/articles/2006/11/designin
g-scalable-synthetic-compact-applications-for-
benchmarking-high-productivity-computing-systems/.
Website accessed February 21, 2008.

[4] Boehm, B. (2000). Software cost estimates with COCOMO
2000. Upper Saddle River, NJ: Princeton-Hall.

[5] Brooks, F.P. (1987). No Silver Bullet - essence and accident
in software Engineering, Computer 20, 4. 10-19.

[6] Brown, A. B., Keller, A. and Hellerstein, J. L. (2005), A
model of configuration complexity and its application to a
change management system. In Proceedings of the Ninth
IFIP/IEEE International Symposium on Integrated Network
Management. (IM 2005).

[7] Card, S.K., Moran, T., P. and Newell, A. (1983). The
psychology of human-computer interaction. Hillsdale, NJ:
Erlbaum.

[8] CogTool. http://www.cs.cmu.edu/~bej/cogtool/.

[9] Danis, C. 2006. Forms of collaboration in high
performance computing: Exploring implications for
learning. Proceedings of the conference on Computer
Supported Cooperative Work, Banff, CA.

[10] Danis, C. and Halverson, C. The Value Derived from the
Observational Component in an Integrated Methodology for
the Study of HPC Programmer Productivity. In The Third
Workshop on Productivity and Performance in High-End
Computing (P-PHEC-3), Austin, Texas, 2006.

[11] http://www.eclipse.org/proposals/eclipse-ptp/.

[12] Gray, W., John, B., Stuart, R., Lawrence, D. and Atwood,
M. (1990). GOMS meets the phone company: Analytical
modeling applied to real-world problems. Proceedings of
IFIP Interact ’90: Human Computer Interaction. 29-34,
Cambridge, UK.

[13] Hailpern, B. and Santhanam, P. (2002), Software
debugging, testing, and verification. IBM Systems Journal,
41(1), 4-12.

[14] Halstead, M. (1977). Elements of software science. New
York: Elsevier.

[15] Halverson, C. Unpublished field notes, 2006.

[16] John, B. E. and Kieras, D. E. (1996). Using GOMS for user
interaction design and evaluation: which technique? ACM
Transactions on Computer Human Interactions 3 (4), 287-
319.

[17] Johnson, P. Hongbing, K., Agustin, J., Chan, C., Miglani,J.,
Shenyan, Z. and Doane, W.E.J.. (2003), Beyond the
personal software process: Metrics collection and analysis
for the differently disciplined, In Proceedings of the 25th
International Confefrence on Software Engineering, 641-
646.

[18] Kepner, J. HPC Productivity: An Overarching View.
(2004). International Journal of High Performance
Computing Applications, 18, (4), 393-397.

[19] Kieras, D. & Myers, D. (1997). An overview of the EPIC
architecture for cognition and performance with
applications to human computer interaction. Human-
Computer Interaction. 12, 391-438.

[20] Ko, A. J. & Myers, B.A. (2005). A framework and
methodology for studying the causes of software errors in
programming systems. Journal of Visual Languages and
Computing, 16, 41-84.

[21] Lawrance, T., Bellamy, R., Burnett, M. & Rector, K.
(2008), Using information scent to model the dynamic
foraging behavior of programmers in maintenance tasks. In
Proceedings of the ACM conference on human factors in
computing: CHI 2008. New York, NY: ACM.

[22] McCabe, T. J. (1976) A complexity measure, IEEE
Transactions on Software Engineering, SE-2 (4), 308-320.

[23] Miyake, A. and Shah, P. (eds) (1999), Models of working
memory: Mechanisms of active maintenance and executive
control. New York, NY: Cambridge University Press.

[24] Nystrom, N.A., Urbanic, J., and Savinell, C. Understanding
Productivity Through Non-intrusive Instrumentation and
Statistical Learning. P-PHEC 2005, San Francisco.

[25] Pirolli, P (2007). Information foraging theory: Adaptive
interaction with information. Cambridge: Oxford University
Press.

[26] Simon, H. A. (1962). The architecture of complexity.
Proceedings of the American Philosophical Society, 106,
476-482. Philadelphia: American Philosophical Society.

[27] Snir, M. and Bader, D. A. (2003). A framework for
measuring Supercomputer productivity. International
Journal of High Performance Computing Applications, 18,
(4), pp. 417-432.

[28] Thomas, J. C. & Richards, J. T. (2008). Achieving
psychological simplicity: Measures and methods to reduce
cognitive complexity. In A. Sears & J. Jacko (Eds). The
human-computer interaction handbook: Fundamentals,
Evolving Technologies and Emerging Applications. New
York: Erlbaum, 498-507.

