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Abstract 
This position paper comments on the current quality assessment 
practices amongst scientists writing computational software and 
suggests directions in research that would both increase our 
understanding of the difficulties involved in producing high 
quality computational software and provide useful advice and 
methodologies for the scientists. 

Our views are based on a series of interviews carried out at RMC 
and Queen’s, our personal experiences in writing computational 
software for industry, other research at RMC and Queen’s, and 
software related literature written by computational scientists.  
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1. Introduction 
Testing remains the most commonly used quality assessment 
activity for software of any kind. This is despite wide recognition 
that inspection is the most effective activity (eg.[5]) for quality 
assessment and the fact that formal methods are mathematically 
rigorous (eg. [2]). For computational (or scientific) software, a 
type of validation testing is used almost exclusively by practicing 
scientists. This established practice has been recognized as a 
marginal assessment at best (eg. [6]). The question remains, what 
will work better? By "work", we mean an activity that has the 
following features: an activity that performs as expected, that is 
amenable to the intended users, that meshes with established 
practices, that visibly contributes to the real work the users want 
to do, and the returns on invested time and effort in the activity 
are sufficient to encourage its use. 
To possibly answer these questions, we need first to understand 
the environment where we intend to introduce these new 
activities. Then we need to develop and validate our activities in 
that environment. 

One of us worked for over twenty years as a scientific software 
developer. Both have made personal observations in various areas 
of scientific software development. Together, we carried out a 
series of interviews of scientists who write or use scientific 
software. The conclusion is that there is substantial potential for 
research and collaboration between scientists writing software and 
the software engineering community. 

2. A Brief Characterization of Scientists 
Developing Software 
In our series of interviews, we talked to academic scientists from 
ten different disciplines about their software development 
practices. For all the scientists we interviewed, the development 
or use of software was a means to another end, that of pursuing 
research in their own scientific field. The software background of 
the scientists in our study, whether formal or not, varied from 
none to significant. Similarly, the comfort level of the scientists 
dealing with software varied significantly. The size of the 
software these scientists dealt with varied from less than 1000 
lines of code to over 100 000. 

Despite this variation in the characteristics of our interviewees, 
testing the computational portion of their software involved 
limited testing against values gathered from the world related to 
their field of science or engineering. These values could be 
analytical, experimental or measurements of natural events. They 
test to assess their models, not the software. Only if the software 
comprised a significant user interface did some scientists focus on 
other testing goals such as usability. 

For the computational portion of their software, the quality 
attribute of almost exclusive concern was computational 
correctness. In other words, did the calculations expressed in the 
software code give answers that agreed sufficiently with expected 
answers? In industry, as in our interviews with academic 
scientists, correctness was the prime quality of interest. If the 
software does not return correct answers, then it is useless. Being 
on-time, under budget, maintainable, or highly usable all take a 
backseat to correctness. 

3. What do Verification and Validation 
Mean? 
One of the many problems facing scientists writing their own 
software and attempting to find effective advice for improving its 
quality is confusion in terminology. Particular examples are the 
terms verification and validation. 

The software engineering community has not itself agreed on 
definitions for these terms. One set of definitions are stated 
succinctly as the questions, “Are we building the product right?” 
and “Are we building the right product?” The more formalized 
definitions are found in ISO standards and their derivatives. These 
definitions are linked to measuring whether software production 
activities have produced the desired product. From what we have 
observed, these definitions and their associated processes are 
orthogonal to how scientists work. 

Amongst the scientists, consistency in the definitions for 
verification and validation fares no better. Roache [12] transforms 
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the succinct software definitions into “Verification – solving the 
equations right” and “Validation – solving the right equations”. A 
Canadian standard, CSA N286.7 [3], regulating the production of 
analysis (computational) software for the nuclear industry, uses a 
variant of the ISO definition for verification, implying a waterfall 
type development process: 
“Verification - the process of determining whether or not the 
products of a given phase of the computer program development 
cycle fulfill the requirements established during the previous 
phase.”  

Along with this, N286.7 uses a domain model-focused definition 
for validation: 
“Validation – comparison of the results of the computer program 
with measurements or experimental data or known analytical or 
numerical solutions, so that the accuracy or uncertainty of a 
particular application can be determined.” 

Yet another set of views on verification and validation comes 
from Stevenson [14]: 

“Validation answers the question ‘How well does the model 
reflect objective observations?’ “  and  “The verification problem 
is one of formal systems and therefore applies only to the 
theoretical system.” 

Such definitions indicate that the layers of complexity in 
computational software may need to be assessed individually as 
well as a whole. We suggest that the word assessment be used as a 
general term instead of verification, validation, and that the 
differentiation of types of assessment be done by specifying the 
quality goal of the assessment. 

4. Software Inspection 
Software assessment approaches defined by the software 
engineering community can be roughly classified as testing 
(dynamic assessment), inspection (static assessment), and formal 
methods (mathematically based assessment). 

One of the authors worked in industry for over twenty years in 
various capacities related to computational software development. 
One experience from industry that was not repeated in our 
academic interviews was that of software inspections. 

None of our interviewees did any form of formalized software 
inspections. One scientist described requiring his students to bring 
source code to monthly meetings so he could look at the code. 
The activity was not formalized beyond that. 

From our industrial experience, inspections are not a regular part 
of development activities for scientific software. A novel 
inspection technique (task-directed inspections) and process was 
introduced by one of us into practice in an engineering company 
and its effectiveness examined in a series of empirical 
experiments [8] [9]. The use of the novel inspection activity was 
considered successful but its limitations were also clear. 

Inspections can be used to address different quality factors that 
play a role in correctness in computational software. Consistency 
is one of those factors. Software code can be inspected for 
consistency with documents that describe the theoretical models 
implemented in the code, the users’ manual describing input and 
output data for the code, and data dictionaries created for the 
code, amongst other things. The code can also be inspected for 
self-consistency. Numerical soundness is another factor. 
Implementation of computations is affected by the move from the 

continuous realm to the finite realm. Equations rendered into code 
can be inspected for pitfalls due to round-off errors and other 
numerical traps. The code can also be examined for integrity of its 
use of coding constructs. Does the actual execution of the coded 
statement match the intended semantics? For example, does the 
initialization as coded produce what was intended, would the 
condition statement be evaluated in the manner expected? 

To be effective, inspections need to be carried out by people who 
have the knowledge to understand the code they are inspecting. 
For scientific software, that knowledge includes knowledge of the 
scientific domain. This limits the availability of effective 
inspectors. We found this to be true from our industrial 
experience. To effectively implement our inspection technique, 
we matched code modules to people who had the necessary 
background to understand the intent of the code, for example, heat 
transfer modules to people with heat transfer knowledge, pump 
simulation modules to people with knowledge of pump models, 
etc. This meant that we had one inspector per module and a full 
Fagan-style inspection [4] was out of the question. We provided 
each inspector with a well-defined, guided reading technique that 
helped overcome this limitation [8]. 

Inspections provide a means of finding certain types of defects in 
source code, and should be added to the scientist’s quality 
assessment toolkit. Even something as simple as desk-checking 
your own code should be encouraged. In another industrial 
exercise, two developers acted as inspection buddies (as opposed 
to testing buddies). One developer designed or wrote code while 
the other inspected/read the code and design and turned back 
suggested changes. A thousand lines of highly complex code 
following cutting edge theory was designed, implemented, tested, 
and made to work in a week. 

5. Formal Methods 
We have not ourselves used formal methods to assess 
computational software but have observed formal methods in use 
for safety-critical controller type software. Work is being done at 
McMaster University to extend David Parnas’s tabular notation 
and four-variable models for use with scientific software [11] 
[13]. Generally, formal methods require some type of detailed 
requirements specification. The majority of scientific software is 
developed without the use of detailed requirements specifications. 
To be affordable in industry, the application of a formal method 
needs automated tool support. At this point, it is not clear what 
parts of computational software nor what quality factors would 
benefit from the very fine-grained examination formal methods 
provides. 

6. Established Testing Techniques in 
Software Engineering 
In research at RMC [7], a software engineering graduate student 
devised and carried out a set of tests on an example of software 
written by scientists in nuclear engineering. One of the purposes 
of the research was to provide software engineering expertise to 
the science group in order to improve the quality of their software. 
A variety of testing approaches drawn from established testing 
literature were applied to the software. Obvious successes 
included the discovery of a number of hidden defects, the creation 
of a regression test suite, the organization and cataloguing of test 
data along with ranges of acceptable results, the discovery of the 
impact of different compiler options on numerical results, better 
coverage of the source code with test runs, and the organization of 



version control on all artifacts related to the software. These are 
elements that seem to be typically missing from the toolset of the 
scientist/developer (eg. [1] [15]). More interestingly, it was 
apparent that testing techniques designed around such concepts as 
equivalence classes or code coverage, while not perfect, are even 
less reliable when applied to computational software. 
Computational software represents continuous models using finite 
and discontinuous resources. One set of test data that succeeds 
does not guarantee the success of test data anywhere in its 
neighbourhood, even if it follows the same source code path or 
belongs to the same equivalence class. 

7. Other Confounding Factors for Quality 
Assessment 
A number of factors, both technical and human, contribute to the 
difficulties of assessing scientific software. 

7.1 Dynamic interactions 
Output from computational software is often extensive and 
complex. Correctness of that output (or some selected subset of 
that output) is dependent on not only a long list of factors, but the 
complex dynamic interaction of those factors. Arnold and 
Dongarra [1] write, "Veterans of iterative methods agree that 
finding the right combination of solver, pre-conditioner, scaling 
and re-ordering is an art form developed only with 
experimentation within the application area." Add to that 
differences made by computer word-size, computer architecture, 
compiler options, computing language libraries, and data. That 
interaction is not evident until the code is executed. Scientists are 
aware of the dynamic interactions and testing remains their main 
quality assessment tool. 

7.2 Limited oracle data 
Scientists test the computational component of their software to 
show that their science models are correct, not to find problems 
with the software. To show that the science models are correct, 
scientists gather information from the science domain that they 
are modeling. They use this information as comparisons, or 
oracles, to check their models as implemented in software. 
Sometimes the amount of information available for a set of 
oracles is limited. As one of our interviewees put it, some 
software deals with situations that “you don’t want to see 
happen”. 

7.3 The software is invisible 
Scientists see the software code as an inseparable entity from their 
models. They assess the models. They normally do not assess the 
software as a separate thing that needs attention. The software 
essentially goes invisible. When discussing the possible inclusion 
of a software engineer in his group, one of our interviewees 
declared that the software engineer had to “keep his hands off my 
model”. 

7.4 The singular importance of correctness 
Stevenson [14] quotes Richard Hamming in his article on quality 
computational software: "The purpose of computing is insight, not 
numbers." Computational software is the means of providing the 
data for that insight. However, that insight is gained from having 
correct data, or output, from the software. One of our academic 
interviewees commented that the software had better not lie to 
him. Much preferred is a complete crash of the system than an 

insidious error that goes undetected and provides data that 
corrupts the insight. 

7.5 Scientists want to do science 
Software activities must not interfere with progress in developing 
the scientific models. Scientists do not want to be spending time 
on software issues that do not directly and visibly contribute to 
their doing science. Scientists are primarily interested in doing 
science, not software. 

8. Where Do We Go From Here? 
There are a number of issues that need to be considered. When we 
use the word “works”, we refer to our definition given above. 

(i) How much of the problem is education? Are 
scientists who don’t desk-check their code or keep 
regression test suites unaware of these activities? If 
education is an issue, what do we, as software 
engineers, teach scientists? One of us has taught 
software engineering courses to non-software 
engineers. It is not at all clear what the curriculum 
should include. 

(ii) Scientists talk of applying the “scientific method” 
to their code products, particularly when describing 
validation testing. Their validation testing appears 
to be weak, yet there are certainly examples of high 
quality scientific software. How can we leverage 
the ideas behind the scientific method and apply 
them consistently to scientific software 
production? 

(iii) Correctness is the highest priority quality attribute 
for all scientists. At this point, we don’t have a full 
list of factors that contribute to correctness of 
scientific software, particularly factors in areas that 
a software engineer could address. 

(iv) The disconnect between quality factors and the 
activities to achieve them is well known [10]. What 
activities can contribute to factors of importance to 
correctness? How effective are these activities? 
Would these activities fit into the established way 
of working for scientists? 

(v) We need to develop inspection/reading techniques 
and processes amenable for use by scientists with 
computational software. Their application needs to 
consider the limited resources, the nature of the 
software, and the interests of the scientists using 
them. 

(vi) Are there appropriate uses of formal methods with 
computational software? Where could they be 
used? What tailoring is necessary to make them 
work? 

(vii) The effectiveness and limitations of existing testing 
strategies and techniques need to be established 
when the techniques and strategies are applied to 
computational software. 

(viii) An extensive study of testing approaches currently 
used by scientists is needed to identify approaches 
that work and the conditions under which they do 
work. We need to identify what the scientists are 



missing in their testing practices and determine if 
these “holes” matter. 

Combining all the above, we need to identify, validate, and 
disseminate a toolkit of assessment activities specific for the 
quality factors important to the scientist and computational 
software. This is an enormous research activity. Where 
should we start? 
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