
Assessing the Quality of Scientific Software
 Diane Kelly Rebecca Sanders

Royal Military College of Canada Queen’s University
 Kingston, ON Canada Kingston, ON Canada

 Kelly-d@rmc.ca sanders@cs.queensu.ca

Abstract
This position paper comments on the current quality assessment
practices amongst scientists writing computational software and
suggests directions in research that would both increase our
understanding of the difficulties involved in producing high
quality computational software and provide useful advice and
methodologies for the scientists.

Our views are based on a series of interviews carried out at RMC
and Queen’s, our personal experiences in writing computational
software for industry, other research at RMC and Queen’s, and
software related literature written by computational scientists.

Keywords
Scientific software, software verification and validation, software
testing, software inspection, software development process

1. Introduction
Testing remains the most commonly used quality assessment
activity for software of any kind. This is despite wide recognition
that inspection is the most effective activity (eg.[5]) for quality
assessment and the fact that formal methods are mathematically
rigorous (eg. [2]). For computational (or scientific) software, a
type of validation testing is used almost exclusively by practicing
scientists. This established practice has been recognized as a
marginal assessment at best (eg. [6]). The question remains, what
will work better? By "work", we mean an activity that has the
following features: an activity that performs as expected, that is
amenable to the intended users, that meshes with established
practices, that visibly contributes to the real work the users want
to do, and the returns on invested time and effort in the activity
are sufficient to encourage its use.
To possibly answer these questions, we need first to understand
the environment where we intend to introduce these new
activities. Then we need to develop and validate our activities in
that environment.

One of us worked for over twenty years as a scientific software
developer. Both have made personal observations in various areas
of scientific software development. Together, we carried out a
series of interviews of scientists who write or use scientific
software. The conclusion is that there is substantial potential for
research and collaboration between scientists writing software and
the software engineering community.

2. A Brief Characterization of Scientists
Developing Software
In our series of interviews, we talked to academic scientists from
ten different disciplines about their software development
practices. For all the scientists we interviewed, the development
or use of software was a means to another end, that of pursuing
research in their own scientific field. The software background of
the scientists in our study, whether formal or not, varied from
none to significant. Similarly, the comfort level of the scientists
dealing with software varied significantly. The size of the
software these scientists dealt with varied from less than 1000
lines of code to over 100 000.

Despite this variation in the characteristics of our interviewees,
testing the computational portion of their software involved
limited testing against values gathered from the world related to
their field of science or engineering. These values could be
analytical, experimental or measurements of natural events. They
test to assess their models, not the software. Only if the software
comprised a significant user interface did some scientists focus on
other testing goals such as usability.

For the computational portion of their software, the quality
attribute of almost exclusive concern was computational
correctness. In other words, did the calculations expressed in the
software code give answers that agreed sufficiently with expected
answers? In industry, as in our interviews with academic
scientists, correctness was the prime quality of interest. If the
software does not return correct answers, then it is useless. Being
on-time, under budget, maintainable, or highly usable all take a
backseat to correctness.

3. What do Verification and Validation
Mean?
One of the many problems facing scientists writing their own
software and attempting to find effective advice for improving its
quality is confusion in terminology. Particular examples are the
terms verification and validation.

The software engineering community has not itself agreed on
definitions for these terms. One set of definitions are stated
succinctly as the questions, “Are we building the product right?”
and “Are we building the right product?” The more formalized
definitions are found in ISO standards and their derivatives. These
definitions are linked to measuring whether software production
activities have produced the desired product. From what we have
observed, these definitions and their associated processes are
orthogonal to how scientists work.

Amongst the scientists, consistency in the definitions for
verification and validation fares no better. Roache [12] transforms

First International Workshop on Software Engineering for
Computational Science and Engineering, Leipzig Germany, May 2008.

the succinct software definitions into “Verification – solving the
equations right” and “Validation – solving the right equations”. A
Canadian standard, CSA N286.7 [3], regulating the production of
analysis (computational) software for the nuclear industry, uses a
variant of the ISO definition for verification, implying a waterfall
type development process:
“Verification - the process of determining whether or not the
products of a given phase of the computer program development
cycle fulfill the requirements established during the previous
phase.”

Along with this, N286.7 uses a domain model-focused definition
for validation:
“Validation – comparison of the results of the computer program
with measurements or experimental data or known analytical or
numerical solutions, so that the accuracy or uncertainty of a
particular application can be determined.”

Yet another set of views on verification and validation comes
from Stevenson [14]:

“Validation answers the question ‘How well does the model
reflect objective observations?’ “ and “The verification problem
is one of formal systems and therefore applies only to the
theoretical system.”

Such definitions indicate that the layers of complexity in
computational software may need to be assessed individually as
well as a whole. We suggest that the word assessment be used as a
general term instead of verification, validation, and that the
differentiation of types of assessment be done by specifying the
quality goal of the assessment.

4. Software Inspection
Software assessment approaches defined by the software
engineering community can be roughly classified as testing
(dynamic assessment), inspection (static assessment), and formal
methods (mathematically based assessment).

One of the authors worked in industry for over twenty years in
various capacities related to computational software development.
One experience from industry that was not repeated in our
academic interviews was that of software inspections.

None of our interviewees did any form of formalized software
inspections. One scientist described requiring his students to bring
source code to monthly meetings so he could look at the code.
The activity was not formalized beyond that.

From our industrial experience, inspections are not a regular part
of development activities for scientific software. A novel
inspection technique (task-directed inspections) and process was
introduced by one of us into practice in an engineering company
and its effectiveness examined in a series of empirical
experiments [8] [9]. The use of the novel inspection activity was
considered successful but its limitations were also clear.

Inspections can be used to address different quality factors that
play a role in correctness in computational software. Consistency
is one of those factors. Software code can be inspected for
consistency with documents that describe the theoretical models
implemented in the code, the users’ manual describing input and
output data for the code, and data dictionaries created for the
code, amongst other things. The code can also be inspected for
self-consistency. Numerical soundness is another factor.
Implementation of computations is affected by the move from the

continuous realm to the finite realm. Equations rendered into code
can be inspected for pitfalls due to round-off errors and other
numerical traps. The code can also be examined for integrity of its
use of coding constructs. Does the actual execution of the coded
statement match the intended semantics? For example, does the
initialization as coded produce what was intended, would the
condition statement be evaluated in the manner expected?

To be effective, inspections need to be carried out by people who
have the knowledge to understand the code they are inspecting.
For scientific software, that knowledge includes knowledge of the
scientific domain. This limits the availability of effective
inspectors. We found this to be true from our industrial
experience. To effectively implement our inspection technique,
we matched code modules to people who had the necessary
background to understand the intent of the code, for example, heat
transfer modules to people with heat transfer knowledge, pump
simulation modules to people with knowledge of pump models,
etc. This meant that we had one inspector per module and a full
Fagan-style inspection [4] was out of the question. We provided
each inspector with a well-defined, guided reading technique that
helped overcome this limitation [8].

Inspections provide a means of finding certain types of defects in
source code, and should be added to the scientist’s quality
assessment toolkit. Even something as simple as desk-checking
your own code should be encouraged. In another industrial
exercise, two developers acted as inspection buddies (as opposed
to testing buddies). One developer designed or wrote code while
the other inspected/read the code and design and turned back
suggested changes. A thousand lines of highly complex code
following cutting edge theory was designed, implemented, tested,
and made to work in a week.

5. Formal Methods
We have not ourselves used formal methods to assess
computational software but have observed formal methods in use
for safety-critical controller type software. Work is being done at
McMaster University to extend David Parnas’s tabular notation
and four-variable models for use with scientific software [11]
[13]. Generally, formal methods require some type of detailed
requirements specification. The majority of scientific software is
developed without the use of detailed requirements specifications.
To be affordable in industry, the application of a formal method
needs automated tool support. At this point, it is not clear what
parts of computational software nor what quality factors would
benefit from the very fine-grained examination formal methods
provides.

6. Established Testing Techniques in
Software Engineering
In research at RMC [7], a software engineering graduate student
devised and carried out a set of tests on an example of software
written by scientists in nuclear engineering. One of the purposes
of the research was to provide software engineering expertise to
the science group in order to improve the quality of their software.
A variety of testing approaches drawn from established testing
literature were applied to the software. Obvious successes
included the discovery of a number of hidden defects, the creation
of a regression test suite, the organization and cataloguing of test
data along with ranges of acceptable results, the discovery of the
impact of different compiler options on numerical results, better
coverage of the source code with test runs, and the organization of

version control on all artifacts related to the software. These are
elements that seem to be typically missing from the toolset of the
scientist/developer (eg. [1] [15]). More interestingly, it was
apparent that testing techniques designed around such concepts as
equivalence classes or code coverage, while not perfect, are even
less reliable when applied to computational software.
Computational software represents continuous models using finite
and discontinuous resources. One set of test data that succeeds
does not guarantee the success of test data anywhere in its
neighbourhood, even if it follows the same source code path or
belongs to the same equivalence class.

7. Other Confounding Factors for Quality
Assessment
A number of factors, both technical and human, contribute to the
difficulties of assessing scientific software.

7.1 Dynamic interactions
Output from computational software is often extensive and
complex. Correctness of that output (or some selected subset of
that output) is dependent on not only a long list of factors, but the
complex dynamic interaction of those factors. Arnold and
Dongarra [1] write, "Veterans of iterative methods agree that
finding the right combination of solver, pre-conditioner, scaling
and re-ordering is an art form developed only with
experimentation within the application area." Add to that
differences made by computer word-size, computer architecture,
compiler options, computing language libraries, and data. That
interaction is not evident until the code is executed. Scientists are
aware of the dynamic interactions and testing remains their main
quality assessment tool.

7.2 Limited oracle data
Scientists test the computational component of their software to
show that their science models are correct, not to find problems
with the software. To show that the science models are correct,
scientists gather information from the science domain that they
are modeling. They use this information as comparisons, or
oracles, to check their models as implemented in software.
Sometimes the amount of information available for a set of
oracles is limited. As one of our interviewees put it, some
software deals with situations that “you don’t want to see
happen”.

7.3 The software is invisible
Scientists see the software code as an inseparable entity from their
models. They assess the models. They normally do not assess the
software as a separate thing that needs attention. The software
essentially goes invisible. When discussing the possible inclusion
of a software engineer in his group, one of our interviewees
declared that the software engineer had to “keep his hands off my
model”.

7.4 The singular importance of correctness
Stevenson [14] quotes Richard Hamming in his article on quality
computational software: "The purpose of computing is insight, not
numbers." Computational software is the means of providing the
data for that insight. However, that insight is gained from having
correct data, or output, from the software. One of our academic
interviewees commented that the software had better not lie to
him. Much preferred is a complete crash of the system than an

insidious error that goes undetected and provides data that
corrupts the insight.

7.5 Scientists want to do science
Software activities must not interfere with progress in developing
the scientific models. Scientists do not want to be spending time
on software issues that do not directly and visibly contribute to
their doing science. Scientists are primarily interested in doing
science, not software.

8. Where Do We Go From Here?
There are a number of issues that need to be considered. When we
use the word “works”, we refer to our definition given above.

(i) How much of the problem is education? Are
scientists who don’t desk-check their code or keep
regression test suites unaware of these activities? If
education is an issue, what do we, as software
engineers, teach scientists? One of us has taught
software engineering courses to non-software
engineers. It is not at all clear what the curriculum
should include.

(ii) Scientists talk of applying the “scientific method”
to their code products, particularly when describing
validation testing. Their validation testing appears
to be weak, yet there are certainly examples of high
quality scientific software. How can we leverage
the ideas behind the scientific method and apply
them consistently to scientific software
production?

(iii) Correctness is the highest priority quality attribute
for all scientists. At this point, we don’t have a full
list of factors that contribute to correctness of
scientific software, particularly factors in areas that
a software engineer could address.

(iv) The disconnect between quality factors and the
activities to achieve them is well known [10]. What
activities can contribute to factors of importance to
correctness? How effective are these activities?
Would these activities fit into the established way
of working for scientists?

(v) We need to develop inspection/reading techniques
and processes amenable for use by scientists with
computational software. Their application needs to
consider the limited resources, the nature of the
software, and the interests of the scientists using
them.

(vi) Are there appropriate uses of formal methods with
computational software? Where could they be
used? What tailoring is necessary to make them
work?

(vii) The effectiveness and limitations of existing testing
strategies and techniques need to be established
when the techniques and strategies are applied to
computational software.

(viii) An extensive study of testing approaches currently
used by scientists is needed to identify approaches
that work and the conditions under which they do
work. We need to identify what the scientists are

missing in their testing practices and determine if
these “holes” matter.

Combining all the above, we need to identify, validate, and
disseminate a toolkit of assessment activities specific for the
quality factors important to the scientist and computational
software. This is an enormous research activity. Where
should we start?

9. ACKNOWLEDGMENTS
This work is funded by NSERC (Natural Sciences and
Engineering Research Council of Canada) and ARP (Canadian
Department of National Defense Academic Research Program).

10. REFERENCES
[1] Dorian C. Arnold, Jack J. Dongarra, "Developing an
Architecture to Support the Implementation and Development of
Scientific Computing Applications", The Architecture of
Scientific Software, Kluwer Academic Publishers, 2000

[2] Daniel M. Berry, “Formal Methods: The very idea, some
thoughts about why they work when they work”,
http://se.uwaterloo.ca/~dberry/FTP_SITE/reprints.journals.confer
ences/formal.methods.very.idea.extabst.pdf
[3] CSA N286,7-99, Quality Assurance of Analytical, Scientific,
and Design Computer Programs for Nuclear Power Plants,
Canadian Standards Association, March 1999
[4] M.E, Fagan, “Design and Code Inspections to Reduce Errors
in Program Development”, IBM Systems Journal, Vol. 15, No.3,
1976, p.182-211
[5]Robert Glass, “Inspections - Some Surprising Findings”,
Communications of the ACM, April 1999,Vol.42, No.4, pp. 17-
19

[6] Les Hatton, Andy Roberts, “How Accurate is Scientific
Software?”, IEEE Transactions on Software Engineering, Vol. 20,
N0. 10, October, 1994, pp. 785-797

[7] Diane Kelly, Nancy Cote, Terry Shepard, "Software Engineers
and Nuclear Engineers: Teaming up to do Testing", proceedings
Canadian Nuclear Society Conference, St John New Brunswick,
June 2007

[8] Diane Kelly, Terry Shepard, “Task-Directed Inspection”,
Journal of Systems and Software (JSS), Vol. 73/2, October 2004,
pp.361-368

[9] Diane Kelly and Terry Shepard, "Task-Directed Software
Inspection Technique: An Experiment and Case Study",
Proceedings IBM CASCON 2000, Toronto, November 2000

[10] Barbara Kitchenam, Sheri Lawrence Pfleeger; “The Elusive
Target”, IEEE Software Jan.1996, pp.12-20

[11] K. Kreyman and D.L. Parnas, “On Documenting the
Requirements for Computer Programs Based on Models of
Physical Phenomena”, SQRL Report No. 1, Software Quality
Research Laboratory, Dept. of Computing and Software,
McMaster University, January 2002, 14 pgs.
[12] Patrick J. Roache, Verification and Validation in
Computational Science and Engineering, Hermosa Publishers,
New Mexico, USA, 1998
[13] S. Smith, “Systematic Development of Requirements
Documentation for General Purpose Scientific Computing
Software”, Proceedings of the 14th IEEE International
Requirements Engineering Conference, May 2006, pp. 205-215.

[14] D.E.Stevenson, "A Critical Look at Quality in Large-Scale
Simulations", Computing in Science and Engineering, May-June
1999, pp. 53-63

[15] G. Wilson, “Where’s the Real Bottleneck in Scientific
Computing?”, American Scientist, Vol. 94, January 2006, pp. 5.

