
Informing Design of A Search

Tool for Bioinformatics

Medha Umarji

Carolyn Seaman

Dept. of Information Systems,

Univ. of Maryland, Baltimore County

Overview

 Background and prior work

 Results from survey of bioinformatics

professionals

 Current challenges in bioinformatics

software development

 Design of a search and indexing

mechanism for bioinformatics software

 Conclusions

2

Background

 Our prior work in Bioinformatics

◦ Exploring and characterizing bioinformatics
professionals

◦ Quality assurance practices in bioinformatics
projects

◦ Teaching software engineering to end-users

 Current work

◦ Contributing to bioinformatics research,
education and practice from a software
engineering perspective

3

Survey of bioinformatics professionals

 Online survey posted on mailing lists from the
open-bio foundation

 Software development paradigm
◦ Rapid prototyping, iterative

◦ Selected agile practices adopted widely

◦ Heavy involvement in open source

 Characteristics of people
◦ Highly educated

◦ Even mix of computer science and biology-related
majors

◦ Self taught

 High use of CVS/SVN repositories

4

Current challenges in bioinformatics

 Redundancy

◦ Different scripts written to solve similar problems 1

◦ Low reuse

 Users

◦ End-users (self-taught programmers)

◦ Professional programmers (no domain knowledge)

 Quality

◦ Is lower priority than getting the algorithm or tool to work 2

◦ Reliability and accuracy are still important in computational life-
sciences

 Integration

◦ Extremely difficult problem 3

◦ Highly related to the reuse problem

1. Barker, J. and Thornton, J. Software Engineering Challenges in Bioinformatics. In Proceedings of the

International Conference on Software Engineering (Keynote address), Edinburgh, Scotland, UK, 2004

2. Stein, L. Bioinformatics: Gone in 2012. In Proceedings of the O’Reilly Bioinformatics Technology

Conference (Keynote Address), San Diego CA, 2003

3. M. Burnett, C. Cook, and G. Rothermel, "End-user software engineering," Commun. ACM, vol. 47, pp. 53-58,

2004
5

Current trends

 With the open source movement, reuse
should no longer be an elusive goal

 Massive repositories of source code are
available on the web

 Project hosting sites such as Sourceforge.net

 Code-specific search engines are indexing
these repositories (Koders, Krugle and
Google Code Search)

 Open source enables opportunistic
development strategies

6

Addressing the challenges in

bioinformatics software

 Reuse in this field is low, despite emphasis on open source

 Existing tools do not provide adequate support

◦ BioWareDB – Excellent database but poor search capability

◦ Gonzui – Only prototype in 2004

 Agile nature of bioinformatics should promote reuse

We propose a tool for supporting reuse

 Indexing all available code would improve reuse and
subsequently improve quality

 Professional programmers could also learn from existing
artifacts

7

Search and indexing tool

 The tool could be a plug-in or a stand-alone
implementation or an addition to existing
functionality

 Code search engine functionality

 Would operate on an ontology of biology-related
keywords and topics

 Search on source code from a variety of different
sources such as
◦ project hosting sites

◦ code repositories of journals

◦ open source project websites

◦ lab websites

8

Search and indexing tool (Contd.)

 Built-in feature for annotations and
recommendations

 Would enable social network analysis of
CVS data leading to studies of collaboration

 This tool is still in its conceptual phase and
has to be prototyped

 We hypothesize that such a tool would
support reuse

◦ But this idea needs confirmation from
bioinformaticians

9

Tool development strategy:

Contextual inquiry
 A design technique for creating tools by

working closely with users

 User is a partner in the design process

 In-depth understanding of the user

context

 A focused process

 Starts with structured interviews and

observations of users working with

existing code search engines

10

Conclusions

 Next step is to engage bioinformatics
researchers and programmers to validate
the feasibility and utility of such a tool

 An example of exploratory work leading to
domain understanding leading to an idea for
a tool and its design

 As software engineering becomes more
domain-specific, tools need to evolve

 Our findings reveal that a large proportion
of bioinformatics software development is
opportunistic and tools that support the
same should be created

11

Discussion

 Feasibility?

 From a methodology standpoint, how can

we use our studies of programmers to

create solutions for them?

12

