
Barely Sufficient Software Engineering:
10 Practices to Improve Your Research CSE

Software

Michael A. Heroux

James M. Willenbring

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

•Special Thanks:

• LDRD

• NNSA ASC

SAND#: 2009-0579 C

Target Audience:

Research CSE Software

Typically developed using research funding.

Formal software engineering seldom a primary
goal.

Research CSE software developers:
Often lack the training, resources or time to adopt
advanced formal methods and practices

Have a skeptical view of formal software
engineering practices.

Our theme: Better SE Better Research CSE
Select only those practices that we are confident can pay off.

Introduce them gradually.

The 10 Practices

Identified from Trilinos project.

Focus: Practices that most research CSE
software teams can adopt and benefit
from.

Similar to Agile processes.

Additional practices are valuable, but:
Heavy emphasis on SE can be a distraction.

Practices must be introduced gradually.

Research vs. commercial software

Commercial software
• Primary purpose: generating revenue

• Domains: Underlying algorithms and methodologies are
mature

• Increasingly sophisticated and complex, yet more easily
developed and more reliable.

• Reason: software engineering is more mature.

Research software
• Primary purpose: Generating science results.

• New algorithms and modeling capabilities.

• Software developed as proof-of-concept and to generate first-
of-a-kind results

• Highly trained scientists, not professional software engineers.

• Scientists can produce high quality software:
• Use common sense principles and self-discipline.

• But ad hoc manner makes it difficult to leverage a product
outside its narrowly intended scope.

Practice 0: Manage source (the basics)

The vast majority of CSE software

projects use source management

But not all.

Single most important practice:

• Source files are kept in a repository.

• Developers regularly commit changes.

• Repository is the source for source code.

Practice 1: Use issue-tracking software for

requirements, features and bugs

Issue-tracking software:
logical collection point for information
concerning bugs, features, and requirements.

Why:
• Issues visible to the whole team

• Ability to prioritize issues

• Ability to establish dependencies between issues:
• Break larger issues down into pieces.

• See how different issues affect one another

• History of issues searchable.

Practice 2: Manage source

(beyond the basics)
• Branching

Independent line of development (not agile).

Stabilize a release branch (not agile).

Still can merge from one branch to another (challenging).

• Tagging
Snapshot of the current state of the repository.

Create a bit-wise identifiable release.

Eliminates ambiguity.

• Source browsing and viewing tools
ViewVC - can be used with SVN or CVS

Bonsai - compatible only with CVS
• Search.

• Browse.

• Compare.

Practice 3: Use mail lists to communicate

Abstraction of interested people.

Centralized mail list tool prevents the lists from getting stale.

Useful for archival purposes and spam filtering.

Examples lists:
• Users

• Developers

• Leaders

• Regression

• Check-in

• Announce

Wikis may be used in addition to mail lists, advantages:
• hypertext browsing

• real-time editing

• collaborative development of content.

Practice 4: Use checklists for repeated

processes
Checklists are valuable tools
• making easily repeatable processes
• reduces the chance that steps are omitted
• training purposes
• artifacts

The Trilinos project uses several different
checklists
• several release checklists
• a new developer checklist
• a CVS commit checklist

• Goal: Automating checklist steps is even
better.

About “Barely sufficient”

A minimalist attitude to formal processes:
Adopt only those that have a large impact.

Mindless Imposition of Formal SE bad for CSE
community:

Large-scale formal document generation as “first step”.
Large effort to satisfy an external requirement, does not benefit the
project team.
Documents become out-of-date quickly and therefore are irrelevant
or even misleading.

Formal documents:
Certainly play a role in a project:

• Domain vision statement, e.g., Trilinos Strategic Goals.
• Highlighted core, ACM TOMS article An Overview of the Trilinos Project.

Modest, should be developed after the product architecture is stable.
Are essential when a product is ready for hand-off to maintenance
team.

Practice 5: Create barely sufficient,

source-centric documentation
Create a combination of near-to-the-source and in-source
documentation can be very effective.

In source:
User-callable functions and executables should be documented in the source
files, e.g. using Doxygen.

Processing source files then generates documentation.

Higher-level conceptual documentation:
Custom-developed, but still tightly coupled to examples in software repository.

Examples should be extracted from actual working examples in the repository.

Requirements, analysis and design documentation:
Captured by appropriate tools such as Bugzilla (for requirements) and UML
graphics tools (e.g., Microsoft Visio).

Doxygen for design discussions: produces UML diagrams directly from source
code.

Documentation efforts should not:
Be long, hand-written, text documents until …

a project reaches a level of maturity where there is little change in software
design and implementation.

Practice 6: Use build-configuration

management tools
Build-configuration management tools:

Makes software accessible to a much broader audience.

Make software support much less expensive.

Superior to hand-written makefiles (common for CSE
software).

Preferred approaches:
CMake-based[11] build system.

Linux RPM or Windows.

About Cmake:
Very portable, supplies rich set of build targets.

Trivial to use for simple projects.

Complex codes:
• Configuration management tools challenging to adopt.

• Provide tremendous value in long run.

Practice 7: Write tests first, run them

often
Common view: Testing done late in coding process.

TDD : Write tests first.

TDD benefits:
Test programs debug design.

Measure of progress: 100% test failure to 100% test success.

Full suite of tests provides:
Confidence to revise after the initial implementation

Improves long-term quality of product as it matures.

Adopting TDD as a habit:
A cultural challenge,: writing tests delays the initial development.

But provides tremendous value: Greatly reduces development costs,
improves long-term software quality.

Practice 8: Program tough stuff together

Pair programming:
Concept formalized by XP.

Not natural for CSE developers.

More used to sitting alone carefully writing source.

Selective use:
Don’t advocate pair programming for all
development.

Development of complex software functions.

Especially:
Incorporating the use of another developer’s
software.

Produces superior software.

Provides important feedback.

Practice 9: Use a formal release process

When a project is just getting started:
Run some reasonable set of tests on a defined set of platforms

Tag the new version when all of those tests pass.

For larger software projects:
Formal release process is essential.

For reaching a stable point at which a release can occur, but also for managing the
process in a controlled way so that when all necessary processes have been completed, a
release can be completed with greater confidence.

Continual Process Improvement (See Practice 10):
Trilinos and its user base have grown dramatically.

Release process for a major release has gone from an informal series of tests on a release
branch to a much larger, coordinated effort.

Multiple key users to certify their test suite against the release candidate.

After each release, the processes are reviewed for ways to improve the next release.

Minor releases:
Entire major release process no justified. the cost.

Subset of the major release process is used.

Periodically evaluated for effectiveness.

Practice 10: Perform continual process

improvement
Improving software processes is an on-going effort.

Any software process, no matter how poorly defined, can be
written down and improved upon, and any process, no matter how
mature, can be made better.

Example: Training a new developer.

Until a draft process is recorded, user training will be haphazard.

Standardize the training with a checklist.

Refine checklist using process improvement.

Checklist usage:
Each use: consider whether or not modifications are necessary.

Poll checklist users to combine all of the best ideas into one standard
list.

Include items on process checklists that reflect future goals

Conclusions

Research CSE software can benefit from modern
software engineering practices and processes.
However:

The goal of research CSE software is often research and
development.
The software product is just one output.
Too much emphasis on software processes can put a project
at risk.

The 10 practices: Not a large effort for most research
CSE software teams.
Once adopted should:

Provide a qualitative improvement in the overall software
development process, producing better quality software
with less effort.
Give research CSE project teams more time for science and
engineering research and development.

References

[1] M. A. Heroux, “Trilinos Home Page”, http://trilinos.sandia.gov, 2009.

[2] “Agile Software Development Home Page”, http://www.agile-software-development.com,

2009.

[3] Tigris.org, “ Subversion Home Page”, http://subversion.tigris.org, 2009.

[4] “Concurrent Versions System Home Page”, http://www.nongnu.org/cvs, 2009.

[5] Scott Chacon, “Git – Fast Version Control System Home Page” http://git-scm.com, 2009.

[6] Tigris.org, “ViewVC Home Page”, http://www.viewvc.org, 2009.

[7] Mozilla, “ Bonsai Project Home Page”, http://www.mozilla.org/projects/bonsai, 2009.

[8] GNU, “Mailman, the GNU Mailing List Manager Home Page”, http://www.gnu.org/

software/mailman, 2009.

[9] Mozilla, “Home::Bugzilla::bugzilla.org Home Page”, http://www.bugzilla.org, 2009.

[10] Dimitri van Heesch, “Doxygen Home Page”, http://www.stack.nl/~dimitri/doxygen, 2009.

[11] Kitware, “Cmake - Cross Platform Make Home Page”, http://www.cmake.org, 2009.

[12] K. Beck, Test Driven Development: By Example, Addison-Wesley, Boston, 2003.

[13] K. Beck, Extreme Programming Explained, Addison-Wesley, Boston, 2005.

