Barely Sufficient Software Engineering:
10 Practices to Improve Your Research CSE

Software

Michael A. Heroux
James M. Willenbring
Sandia National Laboratories

*Special Thanks:
* LDRD
* NNSAASC
SAND#: 2009-0579 C

LABORATORY DIRECTED RESEARCH & DEVELOPMENT
Sandia

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, National .
for the United States Department of Energy under contract DE-AC04-94AL85000. Laboratories




Target Audience:
Research CSE Software

= Typically developed using research funding.

= Formal software engineering seldom a primary
goal.

= Research CSE software developers:

¢ Often lack the training, resources or time to adopt
advanced formal methods and practices

* Have a skeptical view of formal software
engineering practices.

= Our theme: Better SE = Better Research CSE

+ Select only those practices that we are confident can pay off.
¢ Introduce them gradually.

Sandia
National
Laboratories



The 10 Practices

* |dentified from Trilinos project.

= Focus: Practices that most research CSE
software teams can adopt and benefit
from.

= Similar to Agile processes.
= Additional practices are valuable, but:

*

¢

Heavy emphasis on SE can be a distraction.

Practices must be introduced gradually.

Sandia
National
Laboratories



Research vs. commercial software

= Commercial software
* Primary purpose: generating revenue

 Domains: Underlying algorithms and methodologies are
mature

* Increasingly sophisticated and complex, yet more easily
developed and more reliable.

* Reason: software engineering is more mature.

= Research software
* Primary purpose: Generating science results.
* New algorithms and modeling capabilities.

« Software developed as proof-of-concept and to generate first-
of-a-kind results

» Highly trained scientists, not professional software engineers.
» Scientists can produce high quality software:
» Use common sense principles and self-discipline.

* But ad hoc manner makes it difficult to leverage a product
outside its narrowly intended scope.

Sandia
National
Laboratories



Practice 0: Manage source (the basics)

* The vast majority of CSE software
projects use source management

= But not all.

= Single most iImportant practice:
» Source files are kept in a repository.
» Developers regularly commit changes.
» Repository is the source for source code.

Sandia
National
Laboratories



Practice 1: Use Issue-tracking software for
requirements, features and bugs

= |ssue-tracking software:

* logical collection point for information
concerning bugs, features, and requirements.

= Why:
e Issues visible to the whole team
« Ability to prioritize issues
Ability to establish dependencies between issues:

e Break larger issues down into pieces.
e See how different issues affect one another

History of issues searchable.

Sandia
National
Laboratories



Practice 2: Manage source
(beyond the basics)

* Branching
+ Independent line of development (not agile).
¢ Stabilize a release branch (not agile).
+ Still can merge from one branch to another (challenging).

e Tagging
¢ Snapshot of the current state of the repository.
+ Create a bit-wise identifiable release.
¢ Eliminates ambiguity.

e Source browsing and viewing tools
+ ViewVC - can be used with SVN or CVS

¢ Bonsai - compatible only with CVS
» Search.
* Browse.
e Compare.

Sandia
National
Laboratories



Practice 3: Use mail lists to communicate

Abstraction of interested people.
Centralized mail list tool prevents the lists from getting stale.
Useful for archival purposes and spam filtering.
Examples lists:
e Users
» Developers
o Leaders
» Regression
e Check-in
 Announce
Wikis may be used in addition to mail lists, advantages:
* hypertext browsing
* real-time editing
» collaborative development of content.

Sandia
National
Laboratories



Practice 4: Use checklists for repeated

ProCesSeS

= Checklists are valuable tools
« making easily repeatable processes
 reduces the chance that steps are omitted
e training purposes
e artifacts

= The Trilinos project uses several different
checklists

e several release checklists
» a new developer checklist
e a CVS commit checklist

e Goal: Automating checklist steps Is even

better.
National
Laboratories



About “Barely sufficient”

= A minimalist attitude to formal processes:
+ Adopt only those that have a large impact.

= Mindless Imposition of Formal SE bad for CSE

community:
+ Large-scale formal document generation as “first step”.
¢ Large effort to satisfy an external requirement, does not benefit the
project team.

+ Documents become out-of-date quickly and therefore are irrelevant
or even misleading.

= Formal documents:

¢ Certainly play a role in a project:
« Domain vision statement, e.g., Trilinos Strategic Goals.
» Highlighted core, ACM TOMS article An Overview of the Trilinos Project.

+ Modest, should be developed after the product architecture is stable.
+ Are essential when a product is ready for hand-off to maintenance

team.
Sandia
National
Laboratories



Practice 5: Create barely sufficient,
source-centric documentation

Create a combination of near-to-the-source and in-source
documentation can be very effective.

In source:
+ User-callable functions and executables should be documented in the source
files, e.g. using Doxygen.
+ Processing source files then generates documentation.
Higher-level conceptual documentation:
¢ Custom-developed, but still tightly coupled to examples in software repository.
+ Examples should be extracted from actual working examples in the repository.

Requirements, analysis and design documentation:

¢ Captured by appropriate tools such as Bugzilla (for requirements) and UML
graphics tools (e.g., Microsoft Visio).

. DOé(ygen for design discussions: produces UML diagrams directly from source
code.

Documentation efforts should not:
+ Be long, hand-written, text documents until ...
+ aproject reaches a level of maturity where there is little change in software

design and implementation.
Sandia
National
Laboratories



Practice 6: Use build-configuration

management tools

= Build-configuration management tools:
+ Makes software accessible to a much broader audience.
+ Make software support much less expensive.

¢ Superior to hand-written makefiles (common for CSE
software).

= Preferred approaches:

¢+ CMake-based[11] build system.
¢ Linux RPM or Windows.

= About Cmake:

+ Very portable, supplies rich set of build targets.
+ Trivial to use for simple projects.

¢+ Complex codes:
» Configuration management tools challenging to adopt.
* Provide tremendous value in long run.

Sandia
National
Laboratories



Practice 7: Write tests first, run them

often

Common view: Testing done late in coding process.
TDD : Write tests first.

TDD benefits:

¢ Test programs debug design.
¢ Measure of progress: 100% test failure to 100% test success.

Full suite of tests provides:
+ Confidence to revise after the initial implementation
¢ |Improves long-term quality of product as it matures.

Adopting TDD as a habit:

¢ A cultural challenge,: writing tests delays the initial development.

+ But provides tremendous value: Greatly reduces development costs,
improves long-term software quality.
Sandia
National
Laboratories



Practice 8. Program tough stuff together

= Pair programming:
¢ Concept formalized by XP.
+ Not natural for CSE developers.
+ More used to sitting alone carefully writing source.

= Selective use:

+ Don’t advocate pair programming for all
development.

+ Development of complex software functions.
= Especially:
* Incorporating the use of another developer’s
software.
¢ Produces superior software.
* Provides important feedback.

Sandia
National
Laboratories



Practice 9: Use a formal release process

When a project is just getting started:

+ Run some reasonable set of tests on a defined set of platforms
¢ Tag the new version when all of those tests pass.

For larger software projects:

Formal release process is essential.

* For reaching a stable point at which a release can occur, but also for managing the

process in a controlled way so that when all necessary processes have been completed, a
release can be completed with greater confidence.

Contmual Process Improvement (See Practice 10):

Trilinos and its user base have grown dramatically.

* Release process for a major release has gone from an informal series of tests on a release
branch to a much larger, coordinated effort.

+ Multiple key users to certify their test suite against the release candidate.
+ After each release, the processes are reviewed for ways to improve the next release.

Minor releases:

+ Entire major release process no justified. the cost.
¢ Subset of the major release process is used.
+ Periodically evaluated for effectiveness. @ Sandia

National
Laboratories



Practice 10: Perform continual process
Improvement

Improving software processes is an on-going effort.

= Any software process, no matter how poorly defined, can be
written down and improved upon, and any process, no matter how
mature, can be made better.

= Example: Training a new developer.

= Until a draft process is recorded, user training will be haphazard.
= Standardize the training with a checklist.

= Refine checklist using process improvement.

= Checklist usage:
¢ Each use: consider whether or not modifications are necessary.

+ Poll checklist users to combine all of the best ideas into one standard
list.

+ Include items on process checklists that reflect future goals

Sandia
National
Laboratories



Conclusions

Research CSE software can benefit from modern
software engineering practices and processes.

However:

+ The goal of research CSE software is often research and
development.

¢ The software product is just one output.
¢ Tlpo_ rrlluch emphasis on software processes can put a project
at risk.
The 10 practices: Not a large effort for most research
CSE software teams.

Once adopted should:

+ Provide a qualitative improvement in the overall software
development process, producing better quality software
with less effort.

* Give research CSE project teams more time for science and
engineering research and development.
@ Sandia
National
Laboratories



References

[1] M. A. Heroux, “Trilinos Home Page”, http://trilinos.sandia.gov, 2009.

[2] “Agile Software Development Home Page”, http://www.agile-software-development.com,
20009.

[3] Tigris.org, “ Subversion Home Page”, http://subversion.tigris.org, 2009.

[4] “Concurrent Versions System Home Page”, http://www.nongnu.org/cvs, 20009.

[5] Scott Chacon, “Git — Fast Version Control System Home Page” http://git-scm.com, 2009.
[6] Tigris.org, “ViewVC Home Page”, http://www.viewvc.org, 2009.

[7] Mozilla, “ Bonsai Project Home Page”, http://www.mozilla.org/projects/bonsai, 2009.

[8] GNU, “Mailman, the GNU Mailing List Manager Home Page”, http://www.gnu.org/
software/mailman, 2009.

[9] Mozilla, “Home::Bugzilla::bugzilla.org Home Page”, http://www.bugzilla.org, 2009.

[10] Dimitri van Heesch, “Doxygen Home Page”, http://www.stack.nl/~dimitri/doxygen, 2009.
[11] Kitware, “Cmake - Cross Platform Make Home Page”, http://www.cmake.org, 2009.
[12] K. Beck, Test Driven Development: By Example, Addison-Wesley, Boston, 2003.

[13] K. Beck, Extreme Programming Explained, Addison-Wesley, Boston, 2005.

Sandia
National
Laboratories



