
Page 1

Integration Strategies for Computational

Science & Engineering Software

Roscoe A. Bartlett

http://www.cs.sandia.gov/~rabartl/

Department of Optimization & Uncertainty Estimation

Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

Second International Workshop on Software
Engineering for Computational Science and

Engineering

May 23, 2009
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy under contract DE-AC04-94AL85000.

2009-0655 C

Page 2

Software Integration in the CS&E Environment

• Need to integrate a large amount of CS&E software:

– Meshing

– Discretizations

– Solvers

– Adaptivity

– Analysis capabilities

– Visualization

– ...

• Each CS&E discipline is highly specialized and requires PhD-level expertise

• The set of algorithms and software is too large for any single organization to

produce

• Set of software is too large to be developed under a single blanket of Full

Continuous Integration (CI)

=> Software Engineering and Software Integration are key bottlenecks for

CS&E to have the fullest impact!

Page 3

CS&E Environment at Sandia National Labs for Trilinos

• Sophisticated CS&E applications

– Discretized PDEs (SIERRA, Alegra, Aleph, Charon)

– Circuit network models (Xyce)

– Other types of calculations (Titian/VTK, Tramonto)

• (Massively) parallel MPI (Gordon Bell Winners)

• Almost entirely developed by non-software people

• Wide range of research to production (i.e. from Aleph to SIERRA)

SIERRA (APP)

Largest and most

complex

Alegra (APP)
Charon

(APP)

Xyce

(APP)

Tramonto

(APP)

Titan/VTK

(APP)

...
Aleph

(APP)

Trilinos (TPL)

TPL: Third Party Lib

• Provides

functionality to

multiple APPs

• The “Supplier” to

the APP

APP: Application

• Delivers end user

functionality

• The “Customer” of

the TPL

Page 4

Standard Software Integration Approaches

APP (Customer)

Developers

TPL (Supplier)

Developers

Helps to create

and maintain

develops

• Helps to create

• Runs as a regression

test suite

develops

APP
TPL

• Continuous Integration (CI)

– Code is expected to build and the tests are expected to run

– Maintained through synchronous or asynchronous CI

– Requires high levels of cooperation and communication

– Requires code to (re)build fast and tests to run fast

• Customer/Supplier Relationships

– Combined code too large to build under single CI system

– Organizations can not cooperate close enough

– Protect APP for future TPL updates through development of Acceptance Test Suite

– May not work as well for may CS&E codes

– Not as well suited for closer collaborations

APP/TPL

Acceptance Test

Suite

Page 5

Challenges to Software Integration in CS&E Environments

• CS&E is a mix of research and production work

– How can you mix research and production software?

• CS&E practitioners have a wide mix of backgrounds in physics, math,

computer science, engineering, etc.

– How to these people communicate together and integrate their technologies?

• CS&E involved very complex, very specialized algorithms

– Requires PhD in area to develop best algorithms/software

– How to integrate very different complex algorithms software?

• Great variability in knowledge and interests in basic software development

knowledge and skills

– How can you produce high quality trusted software with unskilled programmers?

• Close collaboration between different disciplines needed to solve the hard

problems

– How can different practitioners work together through their software?

• CS&E heavily relies on fast floating-point computations

– Output from program varies between platforms and even with different compiler

options!

– How to you keep tests working on different platforms?

• CS&E involves complex nonlinear models

– Examples: ill conditioning, multiple solutions, bifurcations, non-convexities ...

Page 6

Special Challenges with CS&E Software

• CS&E heavily relies on fast floating-point computations

– Output from program varies between platforms and even with different compiler

options!

– How to you keep tests working on different platforms?

• CS&E involves complex nonlinear models

– Examples: ill conditioning, multiple solutions, bifurcations, non-convexities ...

These issues conspire together to make testing and maintaining CS&E software

on multiple platforms very difficult!

Consequences:

• A new test status: The diffing test!

– Code runs to completion but some error tolerance was exceeded

– Many CS&E practitioners convince themselves that a “diff” is not as bad as a “fail”!

• Changes to a numerical algorithm that improve performance in every measure

can cause numerous tests to „diff‟ or even „fail‟!

• Upgrades of a TPL can break an APP even if no real defects have been

introduced!

Page 7

APP + TPL Release with Punctuated TPL Upgrades

TPL Head

APP Head

APP Y+1 & TPL X+1

release

Testing: APP Dev + TPL X APP Dev

transition

to TPL X+1

Testing:

APP Dev + TPL X+1

• Transition from TPL X to TPL X+1 can be difficult and open ended

• Large batches of changes between integrations

• Greater risk of experiencing real regressions

• Upgrades may need to be completely abandoned in extreme cases

• However, this is satisfactory for many APP+TPL efforts!

TPL X+1 release

Page 8

APP + TPL Release and Dev Daily Integration

APP (SIERRA)

Dev

TPL

(Trilinos)

Release

TPL

(Trilinos)

Dev

N
e
w

APP (SIERRA)

Dev Developers
TPL (Trilinos) Dev

Developers
• APP (SIERRA) Dev Developers only build/test against TPL Release

• TPL (Trilinos) Dev Developers work independent from APP

• Keep APP Dev and TPL Dev up to date! => Supported by TPL backward Compatibility!

• Use of staggered releases of TPL and APP

• APP + TPL Dev Developers drive new capabilities

• Difficult for APP to depend too much on TPL

• Does not support tighter levels of integration and collaboration

• APP developers can break “New” a lot when refactoring

• However, this is satisfactory for many APP+TPL efforts!

APP Dev + TPL Dev

Co-Developers

Page 9

APP + TPL Release and Dev Daily Integration

TPL Head (Dev)

APP Head (Dev)

APP Y+1 & TPL X+1

release

Testing: APP Dev + TPL Dev

Testing: APP Dev + TPL X

Testing:

APP +

Tri Dev

Tri X

Tri X+1

• All changes are tested in small batches

• Low probability of experiencing a regression

• Extra computing resources to test against 2 (3) versions of TPL

• Some difficulty flagging regressions of APP + TPL Dev

• APP developers often break APP + TPL Dev when refactoring

• Difficult for APP to rely on TPL too much

• Hard to verify TPL for APP before APP release

• However, this is satisfactory for many APP+TPL efforts!

TPL X+1 release

Testing: APP Dev + TPL Dev

Testing: APP Dev + TPL X+1

SIERRA + Trilinos Integration!

Charon + Trilinos Integration!

Alegra + Trilinos Integration!

Xyce + Trilinos Integration!

Page 10

APP + TPL Almost Continuous Integration: Principles

• Regular TPL developers only build and run TPL pre-checkin test suite.

• Regular APP developers should only check out code that has already built

and passed their pre-checkin APP test suite.

• Code that builds and passes the pre-checkin test suite is safe to check in.

• Co-development of the APP + TPL needs to be productive and not

discourage frequent checkins (at least to direct collaborators).

• Regular APP developers should be able to easily build and test “New” APP

+ TPL Dev code to avoid breaking it before checkin.

Page 11

APP Owned

TPL Owned

APP + TPL Almost Continuous Integration: Overview

Main APP

VC Repository

(Dev)

APP-owned TPL

VC Repository

(Dev-)

APP Dev

Developers

TPL Dev

Developers

APP Pre-Checkin

Test Suite

APP Regression

Test Suite

TPL Regression

Test Suite

APP Dev

Nightly Testing

APP Dev + TPL Dev-

TPL Dev

Nightly Testing

Main TPL

VC Repository

(Dev)

TPL Pre-Checkin

Test Suite

APP Dev + TPL Dev

Co-Developers

APP Dev + TPL Dev

Page 12

5.b) Check in

APP + TPL Almost Continuous Integration: Co-Development

1.a) Check out

1.b) Check out

1.c) Check out

1.d) Check out (and merge)

3) Build

4.a) Run test suite

1.e) Check out

2.a) Modify & extend

2.b) Modify & extend

2.d) Modify & extend

4.b) Run test suite

2.c) Modify & extend

5.a) Check in

5.c) Check in

5.d) Check in

5.e) Check in

TPL Local

Working Directory

(Dev- and Dev)

APP-owned TPL

VC Repository

(Dev-)

Main APP

VC Repository

(Dev)

APP Pre-Checkin

Test Suite

Main TPL

VC Repository

(Dev)

APP Local

Working Directory

(Dev)

APP Pre-Checkin

Test Suite

Working Directory

TPL Pre-Checkin

Test Suite

TPL Pre-Checkin

Test Suite

Working Directory

• Pre-checkin test suites for APP and TPL are both run before checkin

• Simultaneous checks into APP-owned TPL Dev- and Main TPL Dev VC Repositories!

– Changes in APP-owned TPL VC Dev- Repos get back into Main TPL VC Dev Repos!

Page 13

APP + TPL Almost Continuous Integration: Releases

TPL Head (Dev)

APP Head (Dev)

APP Y+1 & TPL APP Y+1 release

Nightly Testing: APP Dev + TPL Dev (pre-checkin tests only, TPL Dev- checkin)

Nightly Testing: APP Dev + TPL Dev- (complete test suites)

Supported with asynchronous continuous integration testing of APP Dev + TPL Dev

TPL APP Y+1 release

• All changes are tested in small batches

• Low probability of experiencing a regression between major releases

• Less computing resources for detailed nightly testing (only one TPL version)

• All tested regressions are flagged in less than 24 hours

• Allows code to flow freely between the APP and TPL

• Supports rapid development of new capabilities from top to bottom

• All code checked out by APP Dev developers has passed pre-checkin build/test

• More complex processes (i.e. requires some tools?)

• APP Dev developers spend more time spent recompiling TPL code

• Recommended for projects requiring high levels of integration & collaboration!

Page 14

Maintenance of APP + TPL Integration

Hard TPL #2

Issues

Hard TPL #1

Issues

APP Dev + TPL Dev Build/Test

or

APP Dev + TPL Dev-/Release Build/Test

TPL #1

Developers

TPL #2

Developers

APP + TPL

Monitors

TPL #1

Representatives

TPL #2

Representatives

All failures

TPL #1

Issues

APP

Representatives

APP Developers

APP

Issues

TPL #2

Issues

• APP + TPL Monitor:

– Member of the APP development team

– Has good familiarity with the TPLs

– Performs first-round triage (APP or TPL?)

– Forwards issues to APP or TPL Reps

– Ultimate responsibility to make sure issues

are resolved

• APP Representative:

– Member of the APP development team

– Second-round triage of APP issues

– Forwards hard APP issues to APP

developers

• TPL Representative:

– Member of the TPL development team

– Has some familiarity with the APPs

– Second-round triage for TPL issues

– Forwards hard TPL issues to TPL

developers

• General principles:

– Roles of authority and accountability

(Ordained by management)

– At least two people serve in each role

– Rotate people in roles

Hard APP

Issues

Page 15

Experience with Integration Approaches with Trilinos at SNL

Charon + Trilinos Integration:

– First implemented APP + TPL Release and Dev Daily Integration in 2007

– Maintained daily integration with little effort

– Supporting more ambitious collaborations and integration efforts

– However, has never gone through a full release process under this model

• Alegra + Trilinos Integration:

– Started APP + TPL Release and Dev Daily Integration in 2008

– Maintained daily integration with little effort on multiple platforms

– Upgrade to Trilinos 9.0 was easy and risk free, less overall effort

• SIERRA + Trilinos Integration:

– Started APP + TPL Release and Dev Daily Integration in mid 2008

– Before daily integration:

• SIERRA 4.9 released against Trilinos 7.0 (a 1.5 year old release)

• Upgrade of SIERRA VOTD to Trilinos 8.0 was a “disaster”

– After daily integration:

• SIERRA 4.10 released against Trilinos 9.0 (2 months old) with no issues

• SIERRA 4.11 released against snapshot branch of Trilinos (2 weeks old)

– Currently having lots of problems with broken code in “New” APP code

– APP + TPL Almost Continuous Integration Process currently being developed!

Page 16

Selecting an Integration Model for CS&E Software

• Each of these different integration models will be appropriate for a particular

APP+TPL situation.

• The particular integration model can be switched during the life-cycles of

the APP and TPL depending on several factors:

– How critical is the TPL functionality currently to the APP?

– Are there alternatives to a particular TPL that can duplicate functionality?

– How actively is the TPL being developed?

– Is it critical for the APP to continue to accept new releases of the TPL?

– How active is the collaboration between APP and TPL developers?

– Is the TPL a fundamental part of the infrastructure of the APP?

– ...

Page 17

Conclusions

• Need to integrate a large amount of CS&E software:

– Meshing

– Discretizations

– Solvers

– Adaptivity

– Analysis capabilities

– Visualization

– ...

• Software Engineering and Software Integration are key bottlenecks for

CS&E to have the fullest impact!

• The CS&E R&D community needs to adopt better Lean/Agile software

engineering methods:

– Need a strategy to inject basic software engineering knowledge into CS&E

– These methods must be adapted to the special properties of CS&E

Page 18

The End

The End

Page 19

Summary of CS&E Software Integration Models

• Nightly building and testing of the development versions of the application

and TPLs:

– results in better production capabilities and better research,

– brings TPL developers and APP developers closer together allowing for a better

exchange of ideas and concerns,

– refocuses TPL developers on customer efforts,

– helps drive continued research-quality TPL development, and

– reduces barriers for new TPL algorithms to have impact on production

applications.

• Integration Models:

– APP + TPL Release with Punctuated TPL Upgrades

• Little to no testing of APP + TPL Dev in between TPL releases

– APP + TPL Release and Dev Daily Integration

• Daily Integration testing done for both APP + TPL Release and Dev

• Staggered releases of TPL and APP

– APP + TPL Almost Continuous Integration

• APP Dev + TPL Dev developers update both APP-owned and main TPL repositories

• Nightly testing of APP Dev + TPL Dev automatically updates APP-owned TPL Dev- VC

Repository

• Releases best handled as combined releases of APP and TPL

• TPL Dev- checkins can be dialed back approaching TPL Release and Dev Integration!

