Developing Scientific Applications
Using Generative Programming

Ritu Arora
Purushotham Bangalore
Marjan Mernik

“ Computer and
Information Sciences

Basic Concepts Related to the Talk

Abstraction

Domain-Specific Languages (DSLs)
Program Transformation
Crosscutting Concern
Checkpointing

Abstraction

1. A representation that captures only essential aspects of

something, reducing the complexity apparent to the abstraction's
user

Criwver

2. Hides details -
vﬂ . car
Automotlve

.I','i
Englneer o

- Electronic
“Ta. Control Unit

Tl
Car Parts ﬁaa,-';l-f"i iﬁiiﬁ]

Dwslgner

)
1L A Capacitors
g

and Transistors

N

Levels of abstraction in automotive design

gns

Domain-Specific Language (DSL)

e DSLs are

— high-level languages with a very narrow domain and a
very high-level of abstraction

— less comprehensive than general-purpose languages
— more expressive in their domain

begin
left
up
right
down
end

Program Transformation

Base

Program

|

Application
-

Transformed Program

— Transformation
Engine

T

Transformation Rule

- f weave

\ 4

Ry

Transformed H
Application
=l

Compiler

B

Executable
Application

(Base Code, New Requirement)

Crosscutting Concern

= XML Parsing in Apache
Tomcat Server

m Logging in Apache Tomcat
Server

—

Source: http://www.parc.com/research/projects/aspectj/

Checkpointing

Stage 1 ' _ Stage 3
e Failure while

* Start computing c ot
Execution e Restart from E)?gzstieoﬁ
e |nitialization Scratch or
e Computation from this
point?

* Checkpointing: System-level or Application-level

* Application-Level Checkpointing (ALC)

— Checkpointing mechanism is directly inserted
into the application

— Critical Application variables & data
structures are saved

A3 High Performance Computing

= ..7@.._.,
g e’ —
s R .u’
ﬁ_., AN
S < 52
< Sz =eh
= > $'v > =
P

e Who are the end-users?

* End-Users are increasingly relying upon high-
performance clusters that amplify computing
power

 Multi-Core & multi-processor architectures
— Difficult to program
— Time to production long :-

Domain
experts feel
burdened

Multi-Core Programming

* Most often done via explicit parallelization
using APlIs like MPI (offers speed & portability)

Sequential Application

Reengineering is a
complex, resource = a e e e
critical operation

\ ~‘~-
tiqn Scheme “~~.¥Insert MPI APIs
\

\ N ' Reengineering
\
\

Parallel Application

\
Optimization®}

Reengineering

BN e

d

Challenges in Multi-Core & Multi-
Processor Programming

Provides a poor layer of abstraction
Development and debugging cost is usually high
Parallelization often becomes a reengineering activity

Necessitates intrusive changes to the sequential
application (high maintenance)

The code becomes complex, difficult to maintain, and
difficult to reuse

No well-established rules, guidelines or patterns for
designing a parallel application

Data decomposition, mapping of computational tasks
to processor and synchronization is all explicit

Desired Improvements

Raising the level of abstraction of the parallel
programming

Semi-automation of the process of non-intrusive
synthesis of parallel programs

Separation of sequential and parallel code
constructs

Promote reusability and modularity in HPC
applications

Proof-of-Concept Using ALC

* Problems
— ALC is a crosscutting concern
— Invasive reengineering of legacy applications is involved
— Repeated code constructs across applications
— Coupling between problem and solution space
* Also Observed
— A pattern for application-level Checkpointing and Restart (CaR)

* What is consistent across various application?
* What varies from application to application?

— The consistent parts of the code for CaR can be abstracted in high-
level language constructs to

* promote code reusability & correctness

* increase expressiveness

— Checkpointing involves overheads => can be undesirable at times

Research Goals

Abstract out the common (reusable) code

ALC mechanism should be implemented non-intrusively
Separation of CaR specifications from its implementation

The development time and cost should be reduced

The checkpointing feature should exist as a pluggable module

The Solution - At A Very High-Level

* Develop a high-level language for specifying the CaR
mechanism (DSL)

* Develop code components

* Generate the CaR code semi-automatically from the end-user
specifications using mappings and code components (Program
Transformation Engine and a mapping language)

* Insert the generated code into the base application (Program
Transformation)

Implementation Approach

AMMA Toolkit

. Domain-Specific

Model

ATL Transformation
v

CaR Specification
through the DSL

DSL Code

Rule-Specification

Language Model

W

L

Generative
Programming

Legacy Application

Program
Transformation
Engine

Backend

Checkpointed
Application

Base Code Snippet

.for (1i=0;i<numGenerations;i++) {

printf ("Gen: %d ", 1i);

pickchroms (fitness,popcurrent,popnext) ;
mutation (popnext,popcurrent) ;

equate (popcurrent, popnext) ;

evaluatePop (popcurrent ,mydata, fitness) ;
printGenFit (popcurrent, fitness, (int) time) ;

oo JdoyUOr dWMNK

Syl

Sample DSL code

beginCheckpointing:
after execution("printGenFit")

&& (frequency = 10) && (loopVar
{

— "i")
SaveInt(time,"restartTime")
SaveIntArray2D (popcurrent, numChrom, numCentroid,

"restartPopCurrent")
}

beginInitialization:

around execution ("fOpenClose")
{

ReadIntVarFromFile (time, "restartTime")
ReadIntArray2DFromFile (popcurrent, numChrom,

numCentroid, "restartPopCurrent")

ReadIntArray2DFromFile (popcurrent, numChrom,

numCentroid,
}

"initial™)

if (i $ 10 == 0){

newInputFile = fopen ("restartPopCurrent. txt",
"
storeVar = fopen("restartTime. txt", "w");
fprintf (storevar, "3d ", time);
for (k= 0; k < numChrom; k++) {
for (j = 0; j < numCentroid; j++) {
fprintf (newInputFile, "%d", popcurrent[k][j]);
}
fprintf (newInputFile, "\n");
}
fclose (newInputFile) ;
fclose (storeVar) ;

Sequential Genetic Algorithm for
Content-Based Image Retrieval

2500

2000

(%)
-]
1500 -

® Manual
1000 -

Time Taken in secon

500 -

0 .
10 20 30

Number of iterations after which checkpointing is done

The GA was run for 100 generations on 82556 image segments

Sequential Poisson Solver

Time taken in seconds

1400

=
N
o
o

1000

800

600

400

200

® Manual
B Generated

3000 5000 10000

Number of iterations after which checkpointing is done

The matrices were of the size 10,000 X 10,000 and the program was run
for 50,000 iterations. The solution converged after 41218 iterations.

Parallel Genetic Algorithm

800

600

500

——Non-Checkpointed
400

300 ——Manually Checkpointed

200 Semi-Automatically

100 Checkpointed

Time taken in seconds

10 20 40

Checkpointing after every nth iteration

The PGA was run for 1000 generations on 82556 image segments and 50 processors

Parallel Poisson Solver

140
w 120
O
: \
9 100 ——
7]
: 80 —Non-Checkpointed
c
L 60 —Manually Checkpointed
S
o 40 . .
= Semi-Automatically
= 20 Checkpointed

O T T 1

1000 3000 5000

Checkpointing after every nth iteration

The matrices were of the size 10,000 X 10,000 and the program was run for
50,000 iterations on 40 processors. The solution converged after 41218
iterations.

£ Java - Eclipse SDK

File Edit Source Refactor Mavigake Search Projeck Rum Window Help

o-ucs-o-a- o (N o

|15 Hierarchﬂ -0 MPI Wizard " O || 5% outine &2 - O
Y <}==l,-> i This wizard creates a file for checkpointing fin autlin is not available.
= IEJ' sample
EI[E sre Save
€] tyClass.cop Select if checkpointing a: | Staternent . |

= IRE System Library [jre1.5.0_11]

o
2 my.cep Select the position of checkpointing:

Restark

Select if checkpointing a: | Skaternent w |

Select the position of checkpointing: w

7 [< Back,][Mext =]L Finish J[Cancel

=
[Problems &2 (] Javadu:u:} &, Declaratiun} ¥ =0

0 errors, O warnings, 0 infos

Descripkion Resource Path Locakion

|:|¢ My Class.cpp - samplejsrc

Thanks!

Questions ?

Email: {ritu, mernik, puri}@cis.uab.edu

http://www.cis.uab.edu/ccl/index.php/Domain-Specific Language for Checkpointing

Acknowledgement

Dr. Purushotham Bangalore
Dr. Marjan Mernik
Dr. Suman Roychoudhury

Department of Computer & Information Sciences

http://www.cis.uab.edu/ccl/index.php/Domain-Specific_Language_for_Checkpointing
http://www.cis.uab.edu/ccl/index.php/Domain-Specific_Language_for_Checkpointing
http://www.cis.uab.edu/ccl/index.php/Domain-Specific_Language_for_Checkpointing
http://www.cis.uab.edu/ccl/index.php/Domain-Specific_Language_for_Checkpointing

