
Developing Scientific Applications
Using Generative Programming

Ritu Arora

Purushotham Bangalore

Marjan Mernik

Basic Concepts Related to the Talk

• Abstraction

• Domain-Specific Languages (DSLs)

• Program Transformation

• Crosscutting Concern

• Checkpointing

Abstraction

Levels of abstraction in automotive design

1. A representation that captures only essential aspects of
something, reducing the complexity apparent to the abstraction's
user

2. Hides details

Domain-Specific Language (DSL)
• DSLs are

– high-level languages with a very narrow domain and a
very high-level of abstraction

– less comprehensive than general-purpose languages

– more expressive in their domain

begin

left

up

right

down

end

Program Transformation

Base
Application

Transformed
Application

Transformation Rule

Transformed Program = fweave (Base Code, New Requirement)

Compiler

Executable
Application

Crosscutting Concern

Source: http://www.parc.com/research/projects/aspectj/

 XML Parsing in Apache
Tomcat Server

 Logging in Apache Tomcat
Server

Checkpointing

• Checkpointing: System-level or Application-level
• Application-Level Checkpointing (ALC)

– Checkpointing mechanism is directly inserted
into the application

– Critical Application variables & data
structures are saved

• Start
Execution

• Initialization

• Computation

Stage 1
• Failure while

computing

• Restart from
Scratch or
from this
point?

Stage 2

Complete
Execution

Stage 3

High Performance Computing

• Who are the end-users?

• End-Users are increasingly relying upon high-
performance clusters that amplify computing
power

• Multi-Core & multi-processor architectures

– Difficult to program

– Time to production long
Domain
experts feel
burdened

Multi-Core Programming
• Most often done via explicit parallelization

using APIs like MPI (offers speed & portability)

Reengineering is a
complex, resource
critical operation

Challenges in Multi-Core & Multi-
Processor Programming

1. Provides a poor layer of abstraction
2. Development and debugging cost is usually high
3. Parallelization often becomes a reengineering activity
4. Necessitates intrusive changes to the sequential

application (high maintenance)
5. The code becomes complex, difficult to maintain, and

difficult to reuse
6. No well-established rules, guidelines or patterns for

designing a parallel application
7. Data decomposition, mapping of computational tasks

to processor and synchronization is all explicit

Desired Improvements

11

• Raising the level of abstraction of the parallel
programming

• Semi-automation of the process of non-intrusive
synthesis of parallel programs

• Separation of sequential and parallel code
constructs

• Promote reusability and modularity in HPC
applications

Proof-of-Concept Using ALC
• Problems

– ALC is a crosscutting concern

– Invasive reengineering of legacy applications is involved

– Repeated code constructs across applications

– Coupling between problem and solution space

• Also Observed

– A pattern for application-level Checkpointing and Restart (CaR)

• What is consistent across various application?

• What varies from application to application?

– The consistent parts of the code for CaR can be abstracted in high-
level language constructs to

• promote code reusability & correctness

• increase expressiveness

– Checkpointing involves overheads => can be undesirable at times

Research Goals

• Abstract out the common (reusable) code

• ALC mechanism should be implemented non-intrusively

• Separation of CaR specifications from its implementation

• The development time and cost should be reduced

• The checkpointing feature should exist as a pluggable module

The Solution - At A Very High-Level

• Develop a high-level language for specifying the CaR
mechanism (DSL)

• Develop code components

• Generate the CaR code semi-automatically from the end-user
specifications using mappings and code components (Program
Transformation Engine and a mapping language)

• Insert the generated code into the base application (Program
Transformation)

Implementation Approach

Base Code Snippet

1.for(i=0;i<numGenerations;i++){

2. printf("Gen: %d ", i);

3. pickchroms(fitness,popcurrent,popnext);

4. mutation(popnext,popcurrent);

5. equate(popcurrent, popnext);

6. evaluatePop(popcurrent,mydata,fitness);

7. printGenFit(popcurrent,fitness,(int)time);

8.}

Sample DSL code

beginCheckpointing:

after execution("printGenFit")

&& (frequency = 10) && (loopVar = "i")

{

SaveInt(time,"restartTime")

SaveIntArray2D(popcurrent, numChrom, numCentroid,

"restartPopCurrent")

}

beginInitialization: around execution ("fOpenClose")

{

ReadIntVarFromFile (time, "restartTime")

ReadIntArray2DFromFile (popcurrent, numChrom,

numCentroid, "restartPopCurrent")

|

ReadIntArray2DFromFile(popcurrent, numChrom,

numCentroid, "initial")

}

Transformed Code
1. for(i=0;i<numGenerations;i++){

2. printf("Gen: %d ", i);

3. pickchroms(fitness,popcurrent,popnext);

4. mutation(popnext,popcurrent);

5. equate(popcurrent, popnext);

6. evaluatePop(popcurrent,mydata,fitness);

7. printGenFit(popcurrent,fitness,(int)time);

8. if (i % 10 == 0){

9. newInputFile = fopen("restartPopCurrent.txt", "w")

10. storeVar = fopen("restartTime.txt", "w");

11. fprintf(storeVar, "%d ", time);

12. for (k = 0; k < numChrom; k++){

13. for (j = 0; j < numCentroid; j++){

14. fprintf(newInputFile, "%d ",popcurrent[k][j]);

18. }

19. fprintf(newInputFile, "\n");

20. }

21. fclose(newInputFile);

22. fclose(storeVar);

23. }

24.}

if (i % 10 == 0){

newInputFile = fopen("restartPopCurrent.txt",

"w")

storeVar = fopen("restartTime.txt", "w");

fprintf(storeVar, "%d ", time);

for (k= 0; k < numChrom; k++){

for (j = 0; j < numCentroid; j++){

fprintf(newInputFile,"%d", popcurrent[k][j]);

}

fprintf(newInputFile, "\n");

}

fclose(newInputFile);

fclose(storeVar);

}

Sequential Genetic Algorithm for
Content-Based Image Retrieval

The GA was run for 100 generations on 82556 image segments

0

500

1000

1500

2000

2500

10 20 30

Ti
m

e
 T

ak
e

n
 in

 s
e

co
n

d
s

Number of iterations after which checkpointing is done

Manual

Generated

Sequential Poisson Solver

The matrices were of the size 10,000 X 10,000 and the program was run
for 50,000 iterations. The solution converged after 41218 iterations.

0

200

400

600

800

1000

1200

1400

3000 5000 10000

Ti
m

e
 t

ak
e

n
 in

 s
e

co
n

d
s

Number of iterations after which checkpointing is done

Manual

Generated

Parallel Genetic Algorithm

The PGA was run for 1000 generations on 82556 image segments and 50 processors

0

100

200

300

400

500

600

700

800

10 20 40

Ti
m

e
 t

ak
e

n
 in

 s
e

co
n

d
s

Checkpointing after every nth iteration

Non-Checkpointed

Manually Checkpointed

Semi-Automatically
Checkpointed

Parallel Poisson Solver

0

20

40

60

80

100

120

140

1000 3000 5000

Ti
m

e
 t

ak
e

n
 in

 s
e

co
n

d
s

Checkpointing after every nth iteration

Non-Checkpointed

Manually Checkpointed

Semi-Automatically
Checkpointed

The matrices were of the size 10,000 X 10,000 and the program was run for
50,000 iterations on 40 processors. The solution converged after 41218
iterations.

Thanks!

Questions ?
Email: {ritu, mernik, puri}@cis.uab.edu

http://www.cis.uab.edu/ccl/index.php/Domain-Specific_Language_for_Checkpointing

Acknowledgement
Dr. Purushotham Bangalore
Dr. Marjan Mernik
Dr. Suman Roychoudhury

http://www.cis.uab.edu/ccl/index.php/Domain-Specific_Language_for_Checkpointing
http://www.cis.uab.edu/ccl/index.php/Domain-Specific_Language_for_Checkpointing
http://www.cis.uab.edu/ccl/index.php/Domain-Specific_Language_for_Checkpointing
http://www.cis.uab.edu/ccl/index.php/Domain-Specific_Language_for_Checkpointing

