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Basic Concepts Related to the Talk

Abstraction

Domain-Specific Languages (DSLs)
Program Transformation
Crosscutting Concern
Checkpointing



Abstraction

1. A representation that captures only essential aspects of

something, reducing the complexity apparent to the abstraction's
user
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Domain-Specific Language (DSL)

e DSLs are

— high-level languages with a very narrow domain and a
very high-level of abstraction

— less comprehensive than general-purpose languages
— more expressive in their domain
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Program Transformation
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Crosscutting Concern

= XML Parsing in Apache
Tomcat Server

m Logging in Apache Tomcat
Server

—

Source: http://www.parc.com/research/projects/aspectj/



Checkpointing
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e Failure while

* Start computing c ot
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point?

* Checkpointing: System-level or Application-level

* Application-Level Checkpointing (ALC)

— Checkpointing mechanism is directly inserted
into the application

— Critical Application variables & data
structures are saved



A3 High Performance Computing
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e Who are the end-users?

* End-Users are increasingly relying upon high-
performance clusters that amplify computing
power

 Multi-Core & multi-processor architectures
— Difficult to program
— Time to production long :-

Domain
experts feel
burdened




Multi-Core Programming

* Most often done via explicit parallelization
using APlIs like MPI (offers speed & portability)
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Challenges in Multi-Core & Multi-
Processor Programming

Provides a poor layer of abstraction
Development and debugging cost is usually high
Parallelization often becomes a reengineering activity

Necessitates intrusive changes to the sequential
application (high maintenance)

The code becomes complex, difficult to maintain, and
difficult to reuse

No well-established rules, guidelines or patterns for
designing a parallel application

Data decomposition, mapping of computational tasks
to processor and synchronization is all explicit



Desired Improvements

Raising the level of abstraction of the parallel
programming

Semi-automation of the process of non-intrusive
synthesis of parallel programs

Separation of sequential and parallel code
constructs

Promote reusability and modularity in HPC
applications



Proof-of-Concept Using ALC

* Problems
— ALC is a crosscutting concern
— Invasive reengineering of legacy applications is involved
— Repeated code constructs across applications
— Coupling between problem and solution space
* Also Observed
— A pattern for application-level Checkpointing and Restart (CaR)

* What is consistent across various application?
* What varies from application to application?

— The consistent parts of the code for CaR can be abstracted in high-
level language constructs to

* promote code reusability & correctness

* increase expressiveness

— Checkpointing involves overheads => can be undesirable at times



Research Goals

Abstract out the common (reusable) code

ALC mechanism should be implemented non-intrusively
Separation of CaR specifications from its implementation

The development time and cost should be reduced

The checkpointing feature should exist as a pluggable module



The Solution - At A Very High-Level

* Develop a high-level language for specifying the CaR
mechanism (DSL)

* Develop code components

* Generate the CaR code semi-automatically from the end-user
specifications using mappings and code components (Program
Transformation Engine and a mapping language)

* Insert the generated code into the base application (Program
Transformation)



Implementation Approach
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Base Code Snippet

.for (1i=0;i<numGenerations;i++) {

printf ("Gen: %d ", 1i);

pickchroms (fitness,popcurrent,popnext) ;
mutation (popnext,popcurrent) ;

equate (popcurrent, popnext) ;

evaluatePop (popcurrent ,mydata, fitness) ;
printGenFit (popcurrent, fitness, (int) time) ;

oo JdoyUOr dWMNK

Syl




Sample DSL code

beginCheckpointing:
after execution("printGenFit")

&& (frequency = 10) && (loopVar
{

— "i" )
SaveInt(time,"restartTime")
SaveIntArray2D (popcurrent, numChrom, numCentroid,

"restartPopCurrent")
}

beginInitialization:

around execution ("fOpenClose")
{

ReadIntVarFromFile (time, "restartTime")
ReadIntArray2DFromFile (popcurrent, numChrom,

numCentroid, "restartPopCurrent")

ReadIntArray2DFromFile (popcurrent, numChrom,

numCentroid,
}

"initial™)




if (i $ 10 == 0){

newInputFile = fopen ("restartPopCurrent. txt",
"
storeVar = fopen("restartTime. txt", "w");
fprintf (storevar, "3d ", time);
for (k= 0; k < numChrom; k++) {
for (j = 0; j < numCentroid; j++) {
fprintf (newInputFile, "%d", popcurrent[k][j]);
}
fprintf (newInputFile, "\n");
}
fclose (newInputFile) ;
fclose (storeVar) ;




Sequential Genetic Algorithm for
Content-Based Image Retrieval
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The GA was run for 100 generations on 82556 image segments




Sequential Poisson Solver
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The matrices were of the size 10,000 X 10,000 and the program was run
for 50,000 iterations. The solution converged after 41218 iterations.




Parallel Genetic Algorithm
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The PGA was run for 1000 generations on 82556 image segments and 50 processors



Parallel Poisson Solver
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The matrices were of the size 10,000 X 10,000 and the program was run for
50,000 iterations on 40 processors. The solution converged after 41218
iterations.



£ Java - Eclipse SDK
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Thanks!

Questions ?

Email: {ritu, mernik, puri}@cis.uab.edu

http://www.cis.uab.edu/ccl/index.php/Domain-Specific Language for Checkpointing
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