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Uintah Runtime Verification (URV) Project 

 Goal: 

Analysis and checking of large high performance 

computing (HPC) problem solving environments 

 Credo: 

Crash early, crash often, explain well. 

 Opportunity: 

Formal methods and HPC teams sitting at the 

same table every two weeks since last summer 

 Focus: 

Lightweight formal methods for the Uintah HPC 

problem solving environment 



Uintah 



Uintah Overview 
 Parallel, adaptive multi-physics framework 

 Fluid-structure interaction problems 

 Patch-based AMR using particles and 
mesh-based fluid-solve 
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Uintah Development 

 Uintah is developed over a decade 

 DOE NETL, C-SAFE, ASC Center... 

 Clear separation of application and infrastructure 

code from the start 

Domain Expert 

(Engineering)  

Infrastructure Expert           

(Computer Science) 

Focus Problem, methods Performance, scalability  

Responsibility Simulation 

components 

Infrastructure 

components 

Contributions Arches, ICE, MPM, 

MPM-ICE, etc. 

Load balancing, AMR,  

task-graph scheduling,  

communication, 

checkpointing 

View of 

Program 

Serial code written for 

a patch  

Parallel infrastructure, 

MPI, threads, GPU 



Modular Architecture of Uintah 



Benefits of Modular Architecture 

 All applications benefit from infrastructure 

improvements without change 

 Allows infrastructure developers to make 

improvements without understanding the 

science of the domain expert 

 Successfully scaled from 2K to 512K cores 

without any changes to applications code 



Benefits of Modular Architecture cont. 

 Infrastructure components easily updated to 

follow the latest architectures 

 Multicore and GPU support, lock-free data 

warehouse… 

 Adding formal methods is more feasible 



Uintah Scalability 

Patch-based domain decomposition 

Asynchronous 

task-based 

paradigm 

 512K cores on ANL Mira (Blue Gene/Q) 

 Multi-threaded MPI – shared memory model on-node 

 Scalable, efficient, lock-free data structures 



Uintah Task-Based Approach 

 Task graph 
 Directed acyclic graph 

 Asynchronous, out of order 
execution of tasks 
 Multi-stage work queue 

design 

 Task – basic unit of work 
 Sequential C++ procedure 

with computation 

 Allows Uintah to be 
generalized to support 
coprocessors and 
accelerators 
 No sweeping code changes 

4 patch, single level ICE task graph 



Support for Heterogeneous Systems 

 Utilize all on-node computational resources 

 Uintah’s asynchronous task-based approach well 

suited for coprocessor and accelerator designs 

 Introduce accelerator and coprocessor tasks 

TACC Stampede 

1000s of Xeon Phi Coprocessors 
DOE Titan 

1000s of GPUs 

Xeon Phi 

Multi-core CPU 

+ 

GPU 



Heterogeneous Scheduler & Runtime 



Lightweight Formal Methods 



Lightweight Formal Methods for HPC 

 Lightweight formal methods can help with 

 Exploring nondeterminism in a systematic way 

 Providing good measures of coverage 

 Explaining and root-causing errors 

 Runtime system monitoring 

 Hybrid concurrency 

 Memory models 

 Floating point precision 

 This talk: Explaining and root-causing errors 



Coalesced Stack Trace Graphs 

 Stack traces portray a story about the runtime 

execution of a program by showing 

 call paths leading to a particular function call 

 the number of times a particular path was taken 

 Facilitate understanding and root cause 

analysis of complex bugs 



Coalesced Stack Trace Graphs cont. 

 The number of stack traces collected during 

execution gets very large 

 Coalesce millions of stack traces using adequate 

graph representations called Coalesced Stack 

Trace Graphs (CSTGs) 

 Infrastructure developer controls where stack 

traces should be collected 



Basic Idea: Diff CSTGs 
CSTG 1 

CSTG 2 

Diff CSTG 



Two Case Studies using Real Bugs 

 MiniBoiler 

 Simulation of oxy-combustion in large-scale clean 

coal boilers 

 An exception is thrown in the data warehouse function 

get() when looking for an element that does not exist 

in the data warehouse 

 Explode2D_AMR 

 Simulation of explosion in Spanish Fork Canyon 

 Wrong calculation of neighbors causes a mismatch in 

the number of sends and receives causing Uintah to 

hang. This happens after the first regridding. 



Bug Study 1: MiniBoiler 

 An exception is thrown in the data warehouse 
function get() when looking for an element that 
does not exist in the warehouse 

 There are two possible reasons why this element 
was not found: 
 it was never inserted or, 
 it was inserted but then removed from the data 

warehouse 

 We insert stack trace collectors before data 
warehouse put() and remove() calls and visualize 
the result 

 We compare graphs of buggy and working 
executions 



CSTG of MiniBoiler 



CSTG of MiniBoiler Crash 



Diff of Good and Bad CSTG 



Diff of Good and Bad CSTG cont. 

 There is a path in the good version leading to the 
reduceMPI() function that never happened in the 
crashing version. 



Understanding the Difference 

 The two versions use different schedulers 

 Good: MPIScheduler calls initiateReduction 

 

 

 

 

 

 

 Bad: UnifiedScheduler never calls initiateReduction 

 

 

 



Understanding the Difference cont. 

 initiateReduction adds an element into the data 

warehouse that never gets added in the 

crashing version 

 The condition guarding this addition is evaluated to 

true only once 



Bug Study 2: Explode2D_AMR 

 Wrong calculation of neighbors causes a 

mismatch in sends and receives 

 Happens after the first regridding 

 Uintah hangs 

 For this example we observe stack traces 

separated by different time steps 



Time Step N 



Time Step N+1 



Comparison N/N+1 

 Just fewer MPI sends and receives 



Time Step N+2 

 Special event is happening 



Time Step N+3 

 Uintah hangs and the resulting graph 
is very different from N+2 and N+1. 

 The number of postMPISends() and 
postMPIRecvs() is not matching. 



Summary 

 CSTGs can be particularly useful to understand 

executions when comparing: 

 Working and non-working versions 

 Symmetric events such as Sends/Recvs, 

Lock/Unlock, New/Delete… 

 Repetitive sequences of events such as time steps 

 Stack traces can be aggregated by different 

time periods, processes, threads... 



Lightweight Formal Debugging Framework 

 Learn specification 
automata from traces 

 Generate runtime 
monitors 
 Run on idle cores 

 Schedule non-intrusively 

 When monitor throws 
an exception 
 Start/stop stack trace 

collection 

 Display CSTGs 


