
Practical Formal Correctness Checking

of Million-Core Problem Solving

Environments for HPC

Diego Caminha B. de Oliveira, Zvonimir Rakamarić, Ganesh

Gopalakrishnan, Alan Humphrey, Qingyu Meng, Martin Berzins

SECSE, May 18, 2013

Acknowledgements: NSF CCF 1241849 (EAGER: Formal Reliability Enhancement

Methods for Million Core Computational Frameworks) and NSF ACI 1148127 SI2-SSE

(Correctness Verification Tools for Extreme Scale Hybrid Concurrency)

Uintah Runtime Verification (URV) Project

 Goal:

Analysis and checking of large high performance

computing (HPC) problem solving environments

 Credo:

Crash early, crash often, explain well.

 Opportunity:

Formal methods and HPC teams sitting at the

same table every two weeks since last summer

 Focus:

Lightweight formal methods for the Uintah HPC

problem solving environment

Uintah

Uintah Overview
 Parallel, adaptive multi-physics framework

 Fluid-structure interaction problems

 Patch-based AMR using particles and
mesh-based fluid-solve

Shaped Charges

Industrial

Flares
Plume Fires

Explosions

Foam

Compaction

Sandstone

Compaction

Carbon Capture

Clean Coal Boiler

Uintah Development

 Uintah is developed over a decade

 DOE NETL, C-SAFE, ASC Center...

 Clear separation of application and infrastructure

code from the start

Domain Expert

(Engineering)

Infrastructure Expert

(Computer Science)

Focus Problem, methods Performance, scalability

Responsibility Simulation

components

Infrastructure

components

Contributions Arches, ICE, MPM,

MPM-ICE, etc.

Load balancing, AMR,

task-graph scheduling,

communication,

checkpointing

View of

Program

Serial code written for

a patch

Parallel infrastructure,

MPI, threads, GPU

Modular Architecture of Uintah

Benefits of Modular Architecture

 All applications benefit from infrastructure

improvements without change

 Allows infrastructure developers to make

improvements without understanding the

science of the domain expert

 Successfully scaled from 2K to 512K cores

without any changes to applications code

Benefits of Modular Architecture cont.

 Infrastructure components easily updated to

follow the latest architectures

 Multicore and GPU support, lock-free data

warehouse…

 Adding formal methods is more feasible

Uintah Scalability

Patch-based domain decomposition

Asynchronous

task-based

paradigm

 512K cores on ANL Mira (Blue Gene/Q)

 Multi-threaded MPI – shared memory model on-node

 Scalable, efficient, lock-free data structures

Uintah Task-Based Approach

 Task graph
 Directed acyclic graph

 Asynchronous, out of order
execution of tasks
 Multi-stage work queue

design

 Task – basic unit of work
 Sequential C++ procedure

with computation

 Allows Uintah to be
generalized to support
coprocessors and
accelerators
 No sweeping code changes

4 patch, single level ICE task graph

Support for Heterogeneous Systems

 Utilize all on-node computational resources

 Uintah’s asynchronous task-based approach well

suited for coprocessor and accelerator designs

 Introduce accelerator and coprocessor tasks

TACC Stampede

1000s of Xeon Phi Coprocessors
DOE Titan

1000s of GPUs

Xeon Phi

Multi-core CPU

+

GPU

Heterogeneous Scheduler & Runtime

Lightweight Formal Methods

Lightweight Formal Methods for HPC

 Lightweight formal methods can help with

 Exploring nondeterminism in a systematic way

 Providing good measures of coverage

 Explaining and root-causing errors

 Runtime system monitoring

 Hybrid concurrency

 Memory models

 Floating point precision

 This talk: Explaining and root-causing errors

Coalesced Stack Trace Graphs

 Stack traces portray a story about the runtime

execution of a program by showing

 call paths leading to a particular function call

 the number of times a particular path was taken

 Facilitate understanding and root cause

analysis of complex bugs

Coalesced Stack Trace Graphs cont.

 The number of stack traces collected during

execution gets very large

 Coalesce millions of stack traces using adequate

graph representations called Coalesced Stack

Trace Graphs (CSTGs)

 Infrastructure developer controls where stack

traces should be collected

Basic Idea: Diff CSTGs
CSTG 1

CSTG 2

Diff CSTG

Two Case Studies using Real Bugs

 MiniBoiler

 Simulation of oxy-combustion in large-scale clean

coal boilers

 An exception is thrown in the data warehouse function

get() when looking for an element that does not exist

in the data warehouse

 Explode2D_AMR

 Simulation of explosion in Spanish Fork Canyon

 Wrong calculation of neighbors causes a mismatch in

the number of sends and receives causing Uintah to

hang. This happens after the first regridding.

Bug Study 1: MiniBoiler

 An exception is thrown in the data warehouse
function get() when looking for an element that
does not exist in the warehouse

 There are two possible reasons why this element
was not found:
 it was never inserted or,
 it was inserted but then removed from the data

warehouse

 We insert stack trace collectors before data
warehouse put() and remove() calls and visualize
the result

 We compare graphs of buggy and working
executions

CSTG of MiniBoiler

CSTG of MiniBoiler Crash

Diff of Good and Bad CSTG

Diff of Good and Bad CSTG cont.

 There is a path in the good version leading to the
reduceMPI() function that never happened in the
crashing version.

Understanding the Difference

 The two versions use different schedulers

 Good: MPIScheduler calls initiateReduction

 Bad: UnifiedScheduler never calls initiateReduction

Understanding the Difference cont.

 initiateReduction adds an element into the data

warehouse that never gets added in the

crashing version

 The condition guarding this addition is evaluated to

true only once

Bug Study 2: Explode2D_AMR

 Wrong calculation of neighbors causes a

mismatch in sends and receives

 Happens after the first regridding

 Uintah hangs

 For this example we observe stack traces

separated by different time steps

Time Step N

Time Step N+1

Comparison N/N+1

 Just fewer MPI sends and receives

Time Step N+2

 Special event is happening

Time Step N+3

 Uintah hangs and the resulting graph
is very different from N+2 and N+1.

 The number of postMPISends() and
postMPIRecvs() is not matching.

Summary

 CSTGs can be particularly useful to understand

executions when comparing:

 Working and non-working versions

 Symmetric events such as Sends/Recvs,

Lock/Unlock, New/Delete…

 Repetitive sequences of events such as time steps

 Stack traces can be aggregated by different

time periods, processes, threads...

Lightweight Formal Debugging Framework

 Learn specification
automata from traces

 Generate runtime
monitors
 Run on idle cores

 Schedule non-intrusively

 When monitor throws
an exception
 Start/stop stack trace

collection

 Display CSTGs

