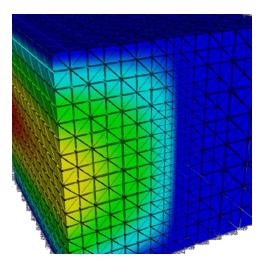
Design and Rationale of a Quality Assurance Process for a Scientific Framework

Hanna Remmel

Institute of Computer Science Im Neuenheimer Feld 326 69120 Heidelberg, Germany <u>http://se.ifi.uni-heidelberg.de</u> remmel@informatik.uni-heidelberg.de

RUPRECHT KARL UNIVERSITY OF HEIDELBERG



Motivation and DUNE - Distributed and Unified Numerics Environment

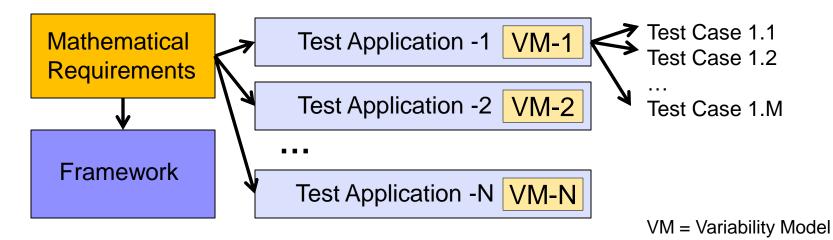
 Focus in our research: quality assurance of scientific frameworks

- DUNE: solving partial differential equations
 - Grid-based methods
 - Supports parallelism

 Applying Software Product Line Engineering (SPLE)

- DUNE applications include
 - Fluid mechanics
 - heat transport
 - flow and transport processes in porous media
 - ...and many more

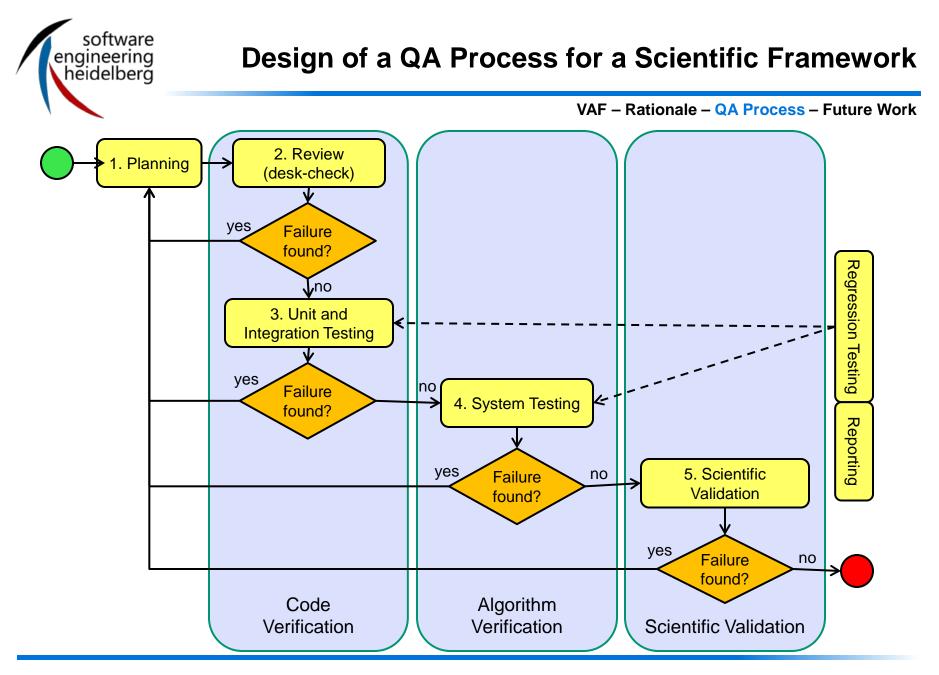
More information: www.dune-project.org



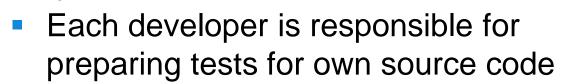
- Software Product Line (SPL) Test Strategy
- Characteristics of Scientific Software as Rationale for a
- Quality Assurance (QA) Process
- Contribution and Future Work

- Criteria (CR) for a SPL test strategy for a framework:
 - CR1: Both commonality and the variability are tested in domain testing
 - CR2: Application testing is supported with reusable test artifacts
 - CR3: Product line applications still need to be tested in application testing
- VAF: reusable system test applications

- Manual literature review with over 200 papers
 - C1 Different possible sources for a software problem. Need for Code Verification, Algorithm Verification and Scientific Validation.
 - C2 Lack of test oracles.
 - C3 Most software requirements, except for high-level ones, are not known at the beginning of a software project. RQs stem from science.
 - C4 The cognitive complexity, the difficulty in understanding a concept, thought, or system, is high.


Characteristics of Scientific Software Development Relevant for the Design of a QA Process

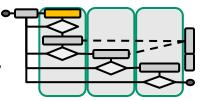
- C5 Need for shared, centralized computing resources; high performance computing, parallelism.
- C6 Calculations include rounding errors and machine accuracy.
- C7 Most developers are domain scientists or engineers, not software engineers.
- C8 There is a high turnover in the development team.


Carver et al.: the most highly ranked project goals

C9	The most highly ranked project goals: 1. Correctness
C10	The most highly ranked project goals: 2. Performance
C11	The most highly ranked project goals: 3. Portability
C12	The most highly ranked project goals: 4. Maintainability

software

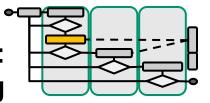
enaineering héidelberă **QA Process Step 1: Planning**



- Add/adjust/remove unit test cases
- Developers personal responsibility: thoroughly understands the source code (C4), might leave the team soon (C8)
- Advisable: Test Driven Development, since specifications mostly do not exist in advance (C3)
- If mathematical requirements change
 - Add/adjust/remove variability models and system test applications

Rationale:

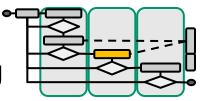
- C4 The cognitive complexity, the difficulty in understanding a concept, thought, or system, is high.
- **C**8 There is a high turnover in the development team.
- C3 Most software requirements, except for high-level ones, are not known at the beginning of a software project. RQs stem from science.



- Earliest possible point to find failures
- Review all created artifacts, e.g. code, unit tests
- Review code structure and readability
 - Understandability for complex code (C4)
 - Benefit for new colleagues (C8)
 - Improves maintainability (C12)
- No structured inspection or review to keep it simple (C7)

Rationale:

C4	The cognitive complexity, the difficulty in understanding a concept, thought, or system, is high.
C8	There is a high turnover in the development team.
C12	The most highly ranked project goals: 4. Maintainability
C7	Most developers are domain scientists or engineers, not software engineers.



- Together with review build the code verification part in V&V (C1)
- Importance of unit tests is high
 - In contexts, where system tests only run on HPC (C5)
 - Alleviate the problem with missing test oracle (C2)

Rationale:

- C1 Different possible sources for a software problem. Need for Code Verification, Algorithm Verification and Scientific Validation.
- C5 Need for shared, centralized computing resources; high performance computing, parallelism.
- C2 Lack of test oracles.

- Output for Algorithm verification (C1)
 - Expected output is determined analytically, if possible, and includes a tolerance range for rounding errors (C6)
 - Together with testing on different platforms significant for correctness (C9) and portability (C11)
- Suitable step for performance testing (C10)
- Together with unit and integration testing implement our SPL test strategy VAF

Rationale:

- C1 Different possible sources for a software problem. Need for Code Verification, Algorithm Verification and Scientific Validation.
- C6 Calculations include rounding errors and machine accuracy.
- C9 The most highly ranked project goals: 1. Correctness
- C11 The most highly ranked project goals: 3. Portability
- C10 The most highly ranked project goals: 2. Performance

- Third step in V&V for scientific software (C1)
- How accurate is the simulation (C9)
- Mostly no analytical solution available (C2)
 - Developers decide based on domain knowledge (C4), whether the simulation result is as expected
- System test environment compares graphical simulation output files
 - Consider rounding errors and machine accuracy (C6)

Rationale:

- C1 Different possible sources for a software problem. Need for Code Verification, Algorithm Verification and Scientific Validation.
 C9 The most highly ranked project goals: 1. Correctness
- C2 Lack of test oracles.
- C4 The cognitive complexity, the difficulty in understanding a concept, thought, or system, is high.

C6 Calculations include rounding errors and machine accuracy.

- Contribution
 - VAF a SPL test strategy for frameworks
 - Special characteristics of scientific software as rationale for the
 - Design of a QA Process for a scientific Framework
- Future Work
 - Fully implement QA Process
 - Make reusable test applications available for DUNE users
 - Evaluate the feasibility and acceptance of the QA process with a Case Study

Hanna Remmel

Institute of Computer Science Chair of Software Engineering Im Neuenheimer Feld 326 69120 Heidelberg, Germany http://se.ifi.uni-heidelberg.de remmel@informatik.uni-heidelberg.de

RUPRECHT KARL UNIVERSITY OF HEIDELBERG