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Abstract 

 
Event services based on publish-subscribe 

architectures are well established components of 
distributed computing applications. Recently, an event 
service has been proposed as part of the Common 
Component Architecture (CCA) for high-performance 
computing applications. In this paper we describe our 
experiences investigating implementation options for 
the CCA event service that exploit interprocess 
communications mechanisms commonly used on HPC 
platforms. The aim of our work is to create an event 
service that supports the well-known software 
engineering advantages of publish-subscribe 
architectures, and provides performance levels 
approaching those achievable using more primitive 
message-passing mechanisms such as MPI.  
 
1. Introduction 
 

Event services based on publish-subscribe 
communications are well-established components of 
distributed computing applications [1]. Event services 
facilitate flexible inter-process communications of 
messages in a loosely-coupled, dynamic architecture. 
Distributed computing standards such as CORBA and 
the Java Enterprise Edition provide event services with 
the Event/Notification Service and Java Messaging 
Service respectively [2,3]. There are also many 
successfully deployed proprietary event services, each 
offering subtly different quality of service and features 
sets [4,5]. 

In 2006, an event service specification was 
proposed for the Common Component Architecture 
(CCA) [8] standard for high-performance computing 
applications. The event service is specified as a 
collection of SIDL (Scientific Interface Description 
Language) interfaces. This permits a wide design space 
of possible event service implementations that conform 
to the SIDL specification. 

An initial implementation of the CCA event service 
has been built in the SciRun scientific computing 

environment [6]. This permits events to be exchanged 
between CCA components executing in the same 
process space. The SciRun event service is essentially 
part of the CCA framework (component container) that 
supports components executing in the same address 
space on SciRun. 

In this paper we describe our initial efforts to design 
and implement a CCA-compliant event service for 
HPC applications. We explore the design alternatives 
that have been considered in order to achieve 
performance levels approaching those of more 
primitive message-passing mechanisms such as MPI. 
Specifically, we present the design and preliminary 
results from an implementation of the event service on 
the Cray XD1 platform exploiting ARMCI [7] 
communications primitives. 
 
2. Event Services 
 

Contemporary events services have their origins in 
message-oriented middleware (MOM) technologies 
developed in the 1990s by various vendors (e.g IBM’s 
MQSeries; TIBCO’s Rendezvous). Event service 
architectures are based on publish-subscribe 
communication mechanisms.  

Publish-subscribe messaging extends the basic 
MOM mechanisms to support 1 to many, many to 
many, and many to 1 style communications. Publishers 
send a single copy of a message addressed to a named 
topic. Topics are a logical name for a communications 
channel implemented by the event service. Subscribers 
listen for messages that are sent to topics that interest 
them. The event server then distributes each message 
sent on a topic to every subscriber who is listening on 
that topic. This basic scheme is depicted in Figure 1. In 
terms of software engineering, publish-subscribe has 
some attractive properties. Senders and receivers are 
decoupled, each respectively unaware of which 
applications will receive a message, and who actually 
sent the message. Each topic may also have more than 
one publisher, and the publishers may appear and 
disappear dynamically. These give considerable 
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flexibility over static configuration regimes. Likewise, 
subscribers can dynamically subscribe and unsubscribe 
to a topic. Hence the subscriber set for a topic can 
change at any time, and this is transparent to the 
application code.  

The event service has the responsibility for 
managing topics, and knowing which subscribers are 
listening to which topics. It also has the responsibility 
for delivering every message sent to all active current 
subscribers, and buffering messages until subscribers 
digest them.  

In addition to basic message delivery capabilities, 
event services support a diverse set of additional 
features. These include guaranteed message delivery in 
the face of software/hardware failure, subscription to 
multiple topics using wildcarded topic names, “time-
to-live” values for messages in the server, and many 
more that space precludes us from describing.  

Due to this wide range of capabilities and close 
similarities in APIs, there is considerable overlap in 
usage scenarios between distributed event and 
messaging services. At one end of the spectrum, 
applications may use these services for communicating 
relatively small and infrequent event notifications. At 
the other end, relatively large and frequent messages 
may be transported. High quality service 
implementations strive to support all usage scenarios, 
for example [9] which efficiently supports message 
sizes from 100 bytes to 100Kbytes. Others are not 
designed for certain use cases and consequently may 
not meet performance or reliability expectations when 
their usage steps outside expected tolerances [4,5] 

 
 Figure 1 Event Service Architecture based on 
Publish-Subscribe Messaging 

 
3. CCA Event Service 
 

The proposed CCA event service comprises a 
collection of SIDL interfaces that facilitate publish-
subscribe messaging using wildcarded topics. Figure 2 

depicts a UML class diagram that represents the 
interfaces and their relationships. 
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Figure 2 CCA Event Service 
 

The key abstraction is the EventService, which 
provides methods for publishers to create Topic 
instances and subscribers to register their desire to 
receive messages from a named Topic. Subscribers 
must register an object that implements the 
EventListener interface with a Topic in order to receive 
messages asynchronously. Event receipt is triggered 
when a subscriber makes an explicit call to the 
EventService::processEvents() method. 

The initial CCA event service implementation in 
the SciRun workbench assumes event publishers and 
subscribers exist in the same process. This simplifies 
event delivery and event queue management due to all 
components sharing a virtual address space. In an 
application environment where publishers and 
subscribers must communicate across processor and 
address space boundaries and achieve high 
performance, the event service implementation 
becomes much more complex. 
 
4. HPC Event Service Design 
 

We have created a preliminary implementation of 
the CCA event service running on a distributed 
memory HPC system.  Our implementation utilizes a 
combination of messaging based on MPI and one-sided 
communication primitives based on ARMCI [7]. 

There were two main considerations driving our 
design and implementation: maintaining support for 
the interface and semantics of the draft CCA event 
service specification and achieving high performance 
with low overhead on distributed memory HPC 
clusters.  One of the key design challenges we faced 
was maintaining the object-oriented nature of the CCA 
event service specification in the presence of multiple, 
distributed address spaces. 
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class Event { 
  … 
private: 
  TypeMap header; 
  TypeMap body; 
}; 

Our implementation is based on MPI and ARMCI, 
which use a process-based mechanism for executing 
applications on an HPC cluster.  Each processor, in 
general, executes a single-threaded process launched 
from the same executable image (Single Program 
Multiple Data paradigm).  In MPI, processes are 
identified by their rank from 0 to p – 1, where p is the 
total number of processes executing the application. 

When executing our event service implementation 
on p processors, we have reserved process 0 as a 
special topic directory process.  Process 0 maintains a 
directory of all the topics that are currently being 
published on the executing application and the location 
of the event queues that are maintained by the 
publishing nodes.   

Publishing and subscribing processes communicate 
with process 0 in order to create new topics or query 
information for a topic via a simple MPI messaging 
protocol.  Currently, this protocol supports four types 
of messages: (1) Add a new topic, (2) Query a topic 
for its publisher and even queue locations, (3) Remove 
a topic from the published list or (4) Quit servicing 
requests.  Process 0 maintains an efficient mapping of 
topic names to publisher processes & event queue 
location (at that publisher process).  We exploit 
ARMCI’s ability of performing remote memory 
operations (get & put) by storing a pointer to the actual 
location of the topic’s event queue on process 0’s topic 
directory mapping. 

 
Figure 3 shows the declarations for the entries in 

process 0’s topic directory mapping.  Note that the 
eventList pointer corresponds to a memory address 
on the publisher’s address space, so it can never be 
dereferenced directly on process 0. 

Once the publisher process has received an 
acknowledgement from the topic directory process that 
a topic has been created, it does not need to interact 
any more with the topic directory process.  In fact, all 
event publishing operations are local to its address 
space. 

To minimize the need for synchronization and 
coordination between topic publishers and subscribers 
we place all published events on special ARMCI-
allocated memory areas on publishing processes.  
These memory areas are directly accessible to other 
processes through ARMCI get & put calls.  

Subscribers to a topic can thus directly access the 
publishing process’ memory to consume events.  By 
allocating published events on the publishing process’ 
memory space, we avoid the need to synchronize the 
state and existence of buffer space on the receiving 
subscriber processes as would need to be done in a 
traditional message-based publish-subscribe 
implementation. 

A publisher process uses local C++ operations and 
methods to manipulate events on its local address 
space.  However, there are some restrictions on how 
objects can be laid out in memory in order to be 
accessible to remote subscriber processes using 
ARMCI get operations.  ARMCI deals with blocks of 
memory without any type semantics attached to them 
(blocks of bytes). For this reason, after an 
ARMCI_Get() operation on a subscriber process the 
data necessary to interpret the received block of bytes 
as an event object needs to be self-contained  in the 
transferred data.  That implies that any data inside an 
event object should be a primitive type (int, float, etc.), 
a fixed-sized array of primitive types or a fully 
embedded object.  Pointers and references to objects 
cannot be supported efficiently in this scheme. 
 
 

 

In the CCA event service, an event consists of two 
TypeMaps, a header and a body, which are mappings 
of string keys to primitive data types and arrays of 
primitive data types.  We have carefully crafted an 
implementation of these TypeMaps that meets the 
above criteria with respect to embedded objects inside 
events. The header and body are fully embedded 
instances of the TypeMap class, each having a fixed, 
compile-time constant size, while still maintaining the 
flexibility of supporting a general mapping of string 
keys to data.   

In this manner, we can support the transfer of an 
event object from publisher to subscriber in a single 
ARMCI_Get() operation which does not require 
heavy-duty preprocessing to serialize and reconstruct 
complex data types.  Figure 4 shows the declaration for 
the Event class with its embedded TypeMaps.  Figure 5 
shows a sketch of the code used to read an event on a 
subscriber process from its remote location on the 
publisher.  It also shows that once an event has been 

struct TopicListEntry { 
  int publisher; // publisher process ID 
  EventList *eventList; // remote pointer 
}; 
 
map<std::string, TopicListEntry> topicMap; 

Figure 3: Topic Directory Entry 

Figure 4: Embedded TypeMaps in an Event
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copied to the subscriber’s address space, it can be 
interpreted as a regular C++ object instance without 
any preprocessing. 
 
4.1 Memory Management Issues 
 

In our design we wanted to preserve the object-
oriented nature of the draft CCA event service 
specification, while still achieving performance 
comparable to procedural message passing protocols 
such as MPI.  For this reason, we decided to implement 
publish and subscribe operations using objects 
allocated in shareable ARMCI memory areas. 
 

The allocation of shareable ARMCI memory areas 
is a relatively expensive collective operation 
(ARMCI_Malloc()) in which all processes executing 
the application must participate.  For this reason, we 
avoid allocating memory through ARMCI_Malloc() 
every time we need to allocate a shareable object.  We 
allocate a single, large chunk of memory from ARMCI 
and then use a specialized heap manager for allocate 
and deallocate sub-chunks from it.  

Our heap manager takes advantage of the fact that 
the sizes of objects that will be shared through ARMCI 
are known at compile time: events have a fixed size 
that depends only on the compile-time size of their 
constituent TypeMaps.  Other objects that are allocated 
on the ARMCI heap (list links, etc.), also have known 
sizes and are much smaller than the event objects.  

To simplify heap management and facilitate the 
creation of classes that allocate objects on the ARMCI 
heap, we created a base class named 
ARMCIAllocatable that provides specialized new() 
and delete() methods that allocate instances on the 
ARMCI heap.  Thus allocating an event object on the 
publisher that will be accessible to remote subscriber 
processes becomes simply: 
 
 Event *ev = new Event; 
 

The main limitation that our approach has is that 
any pointers or references inside an object allocated on 
the ARMCI heap must be to other objects on the 
ARMCI heap. Importantly the transfer of these objects 
to a remote address space (through ARMCI_Get() or 
ARMCI_Put()) is explicit and thus any pointer links 
must be followed explicitly.  For this reason, our Event 
objects have no links or references within them and 
have their member TypeMaps fully embedded within 
them. 
 
5. Preliminary Performance Results 
 

In order to test the performance and functionality of 
our event service implementation, we created a test 
application that executes the event service on a Cray 
XD-1 platform on different numbers of processors.  
The Cray XD-1 system is a distributed memory HPC 
cluster. On the XD-1, dual-processor AMD Opteron 
SMP nodes are connected through a high-speed 
proprietary Cray interconnect named RapidArray [10].  

Our test application initializes the event service and 
then a single publisher proceeds to publish 2500 events 
of a fixed size.  Different numbers of subscribers will 
then consume those events from the publisher’s 
memory.  The consumption of events simply counts 
the number of entries in the event’s TypeMaps.  The 
application measures the number of events that can be 
processed per second for a different number of 
subscribers. 

Figure 6 presents the number of events processed 
per second for different numbers of subscribers (1 to 
16) and for two different event sizes: small (4 KB) and 
large (50 KB).  The number of events processed per 
second ranges from 66,560 for the small event size on 
one subscriber to 954 for the large event size on 16 
subscribers.  The performance drops off as the number 
of subscribers increases due to contention on the 
memory subsystem and RapidArray network port for 
the publisher node.    

We used both processors on the Cray XD-1’s nodes 
for executing our test application. It is important to 
note that for the 50 KB event size the achieved data 
rate (size of events times the number of events/second) 
using one subscriber is 1006 MB/sec (50 KB * 20995 
events/second), which is comparable to the raw MPI 
bandwidth we measured for the same data size (1200 
MB/sec) between two nodes.  The event data rate 
includes the overhead in performing processing of the 
event, while the MPI data rate includes only the data 
transfer time. 

char evBuf[SIZE_EVENT]; 
 
… 
 
ARMCI_Get(remotePtr, evBuf, SIZE_EVENT, 
publisher); 
 
Event *ev = reinterpret_cast<Event *>(evBuf); 
 
 
listener.processEvent(*ev); 

Figure 5: Accessing an event on a subscriber 
process 
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Figure 6: Event processing rate for different 
numbers of subscribers 
 

These results indicate that our scheme which places 
the data on the publisher’s local memory to be 
remotely consumed by the subscribers requires a 
careful balance between the number of subscribers and 
the capability of the publisher to serve their requests.  
However, with a small number of concurrent 
subscribers (<= 2) our object-oriented scheme is able 
to achieve high performance that approaches that of 
raw HPC message passing using MPI. 
 
6. Conclusions and Further Work 
 

We have demonstrated the feasibility of 
implementing a publish-subscribe based event service 
on an HPC platform, which supports high-level object-
oriented interfaces and can achieve high performance 
comparable to raw message passing using MPI.  Our 
scheme uses a pull-based strategy in which subscribers 
remotely consume events from a publisher’s memory 
which limits its scalability with higher numbers of 
concurrent subscribers. 

As future work, we plan to study alternative 
publish-subscribe schemes, such as a push-based 
strategy in which the publisher remotely places events 
onto the consumer’s memories, and other possibilities 
include taking advantage of networking techniques 
such as multicast to reduce the need for the publisher 
to individually send data to each subscriber.  Another 
possibility within a pull-based approach is to replicate 
the published data onto a set of nodes such that no 
single node becomes a bottleneck. 
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