
A High-Performance Event Service for HPC Applications

Ian Gorton, Daniel Chavarría-Miranda, Manojkumar Krishnan, Jarek Nieplocha
Applied Computer Science, Pacific Northwest National Laboratory

{ian.gorton, daniel.chavarria, manoj, jarek.nieplocha}@pnl.gov

Abstract

Event services based on publish-subscribe

architectures are well established components of
distributed computing applications. Recently, an event
service has been proposed as part of the Common
Component Architecture (CCA) for high-performance
computing applications. In this paper we describe our
experiences investigating implementation options for
the CCA event service that exploit interprocess
communications mechanisms commonly used on HPC
platforms. The aim of our work is to create an event
service that supports the well-known software
engineering advantages of publish-subscribe
architectures, and provides performance levels
approaching those achievable using more primitive
message-passing mechanisms such as MPI.

1. Introduction

Event services based on publish-subscribe
communications are well-established components of
distributed computing applications [1]. Event services
facilitate flexible inter-process communications of
messages in a loosely-coupled, dynamic architecture.
Distributed computing standards such as CORBA and
the Java Enterprise Edition provide event services with
the Event/Notification Service and Java Messaging
Service respectively [2,3]. There are also many
successfully deployed proprietary event services, each
offering subtly different quality of service and features
sets [4,5].

In 2006, an event service specification was
proposed for the Common Component Architecture
(CCA) [8] standard for high-performance computing
applications. The event service is specified as a
collection of SIDL (Scientific Interface Description
Language) interfaces. This permits a wide design space
of possible event service implementations that conform
to the SIDL specification.

An initial implementation of the CCA event service
has been built in the SciRun scientific computing

environment [6]. This permits events to be exchanged
between CCA components executing in the same
process space. The SciRun event service is essentially
part of the CCA framework (component container) that
supports components executing in the same address
space on SciRun.

In this paper we describe our initial efforts to design
and implement a CCA-compliant event service for
HPC applications. We explore the design alternatives
that have been considered in order to achieve
performance levels approaching those of more
primitive message-passing mechanisms such as MPI.
Specifically, we present the design and preliminary
results from an implementation of the event service on
the Cray XD1 platform exploiting ARMCI [7]
communications primitives.

2. Event Services

Contemporary events services have their origins in
message-oriented middleware (MOM) technologies
developed in the 1990s by various vendors (e.g IBM’s
MQSeries; TIBCO’s Rendezvous). Event service
architectures are based on publish-subscribe
communication mechanisms.

Publish-subscribe messaging extends the basic
MOM mechanisms to support 1 to many, many to
many, and many to 1 style communications. Publishers
send a single copy of a message addressed to a named
topic. Topics are a logical name for a communications
channel implemented by the event service. Subscribers
listen for messages that are sent to topics that interest
them. The event server then distributes each message
sent on a topic to every subscriber who is listening on
that topic. This basic scheme is depicted in Figure 1. In
terms of software engineering, publish-subscribe has
some attractive properties. Senders and receivers are
decoupled, each respectively unaware of which
applications will receive a message, and who actually
sent the message. Each topic may also have more than
one publisher, and the publishers may appear and
disappear dynamically. These give considerable

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

flexibility over static configuration regimes. Likewise,
subscribers can dynamically subscribe and unsubscribe
to a topic. Hence the subscriber set for a topic can
change at any time, and this is transparent to the
application code.

The event service has the responsibility for
managing topics, and knowing which subscribers are
listening to which topics. It also has the responsibility
for delivering every message sent to all active current
subscribers, and buffering messages until subscribers
digest them.

In addition to basic message delivery capabilities,
event services support a diverse set of additional
features. These include guaranteed message delivery in
the face of software/hardware failure, subscription to
multiple topics using wildcarded topic names, “time-
to-live” values for messages in the server, and many
more that space precludes us from describing.

Due to this wide range of capabilities and close
similarities in APIs, there is considerable overlap in
usage scenarios between distributed event and
messaging services. At one end of the spectrum,
applications may use these services for communicating
relatively small and infrequent event notifications. At
the other end, relatively large and frequent messages
may be transported. High quality service
implementations strive to support all usage scenarios,
for example [9] which efficiently supports message
sizes from 100 bytes to 100Kbytes. Others are not
designed for certain use cases and consequently may
not meet performance or reliability expectations when
their usage steps outside expected tolerances [4,5]

 Figure 1 Event Service Architecture based on
Publish-Subscribe Messaging

3. CCA Event Service

The proposed CCA event service comprises a
collection of SIDL interfaces that facilitate publish-
subscribe messaging using wildcarded topics. Figure 2

depicts a UML class diagram that represents the
interfaces and their relationships.

interface
<<SIDL>>

WildcardTopic

interface
<<SIDL>>

EventListener
Operations

processEvent():void

interface
<<SIDL>>
EventService

Operations
processEvents():void
CreateTopic():Topic
CreateWildcardTopic():WildcardTopic
getTopic():Topic
getWildcardTopic():WildcardTopic
ReleaseTopic():void
ReleaseWildcardTopic():void

interface
<<SIDL>>
Event

Operations
setHeader():void
getHeader():TypeMap
getBody():TypeMap
setBody():void

interface
<<SIDL>>
TypeMap

interface
<<SIDL>>
Topic

Operations
sendEvent():void
getTopicName():String
RegisterEventListener():void
UnRegisterEventListener():void

2

manages

*1

*

processes

Figure 2 CCA Event Service

The key abstraction is the EventService, which
provides methods for publishers to create Topic
instances and subscribers to register their desire to
receive messages from a named Topic. Subscribers
must register an object that implements the
EventListener interface with a Topic in order to receive
messages asynchronously. Event receipt is triggered
when a subscriber makes an explicit call to the
EventService::processEvents() method.

The initial CCA event service implementation in
the SciRun workbench assumes event publishers and
subscribers exist in the same process. This simplifies
event delivery and event queue management due to all
components sharing a virtual address space. In an
application environment where publishers and
subscribers must communicate across processor and
address space boundaries and achieve high
performance, the event service implementation
becomes much more complex.

4. HPC Event Service Design

We have created a preliminary implementation of
the CCA event service running on a distributed
memory HPC system. Our implementation utilizes a
combination of messaging based on MPI and one-sided
communication primitives based on ARMCI [7].

There were two main considerations driving our
design and implementation: maintaining support for
the interface and semantics of the draft CCA event
service specification and achieving high performance
with low overhead on distributed memory HPC
clusters. One of the key design challenges we faced
was maintaining the object-oriented nature of the CCA
event service specification in the presence of multiple,
distributed address spaces.

Publisher

Subscriber

Topic

Create/
Publish

Register/
Subscribe

Subscriber

Subscriber

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

class Event {
 …
private:
 TypeMap header;
 TypeMap body;
};

Our implementation is based on MPI and ARMCI,
which use a process-based mechanism for executing
applications on an HPC cluster. Each processor, in
general, executes a single-threaded process launched
from the same executable image (Single Program
Multiple Data paradigm). In MPI, processes are
identified by their rank from 0 to p – 1, where p is the
total number of processes executing the application.

When executing our event service implementation
on p processors, we have reserved process 0 as a
special topic directory process. Process 0 maintains a
directory of all the topics that are currently being
published on the executing application and the location
of the event queues that are maintained by the
publishing nodes.

Publishing and subscribing processes communicate
with process 0 in order to create new topics or query
information for a topic via a simple MPI messaging
protocol. Currently, this protocol supports four types
of messages: (1) Add a new topic, (2) Query a topic
for its publisher and even queue locations, (3) Remove
a topic from the published list or (4) Quit servicing
requests. Process 0 maintains an efficient mapping of
topic names to publisher processes & event queue
location (at that publisher process). We exploit
ARMCI’s ability of performing remote memory
operations (get & put) by storing a pointer to the actual
location of the topic’s event queue on process 0’s topic
directory mapping.

Figure 3 shows the declarations for the entries in

process 0’s topic directory mapping. Note that the
eventList pointer corresponds to a memory address
on the publisher’s address space, so it can never be
dereferenced directly on process 0.

Once the publisher process has received an
acknowledgement from the topic directory process that
a topic has been created, it does not need to interact
any more with the topic directory process. In fact, all
event publishing operations are local to its address
space.

To minimize the need for synchronization and
coordination between topic publishers and subscribers
we place all published events on special ARMCI-
allocated memory areas on publishing processes.
These memory areas are directly accessible to other
processes through ARMCI get & put calls.

Subscribers to a topic can thus directly access the
publishing process’ memory to consume events. By
allocating published events on the publishing process’
memory space, we avoid the need to synchronize the
state and existence of buffer space on the receiving
subscriber processes as would need to be done in a
traditional message-based publish-subscribe
implementation.

A publisher process uses local C++ operations and
methods to manipulate events on its local address
space. However, there are some restrictions on how
objects can be laid out in memory in order to be
accessible to remote subscriber processes using
ARMCI get operations. ARMCI deals with blocks of
memory without any type semantics attached to them
(blocks of bytes). For this reason, after an
ARMCI_Get() operation on a subscriber process the
data necessary to interpret the received block of bytes
as an event object needs to be self-contained in the
transferred data. That implies that any data inside an
event object should be a primitive type (int, float, etc.),
a fixed-sized array of primitive types or a fully
embedded object. Pointers and references to objects
cannot be supported efficiently in this scheme.

In the CCA event service, an event consists of two
TypeMaps, a header and a body, which are mappings
of string keys to primitive data types and arrays of
primitive data types. We have carefully crafted an
implementation of these TypeMaps that meets the
above criteria with respect to embedded objects inside
events. The header and body are fully embedded
instances of the TypeMap class, each having a fixed,
compile-time constant size, while still maintaining the
flexibility of supporting a general mapping of string
keys to data.

In this manner, we can support the transfer of an
event object from publisher to subscriber in a single
ARMCI_Get() operation which does not require
heavy-duty preprocessing to serialize and reconstruct
complex data types. Figure 4 shows the declaration for
the Event class with its embedded TypeMaps. Figure 5
shows a sketch of the code used to read an event on a
subscriber process from its remote location on the
publisher. It also shows that once an event has been

struct TopicListEntry {
 int publisher; // publisher process ID
 EventList *eventList; // remote pointer
};

map<std::string, TopicListEntry> topicMap;

Figure 3: Topic Directory Entry

Figure 4: Embedded TypeMaps in an Event

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

copied to the subscriber’s address space, it can be
interpreted as a regular C++ object instance without
any preprocessing.

4.1 Memory Management Issues

In our design we wanted to preserve the object-
oriented nature of the draft CCA event service
specification, while still achieving performance
comparable to procedural message passing protocols
such as MPI. For this reason, we decided to implement
publish and subscribe operations using objects
allocated in shareable ARMCI memory areas.

The allocation of shareable ARMCI memory areas
is a relatively expensive collective operation
(ARMCI_Malloc()) in which all processes executing
the application must participate. For this reason, we
avoid allocating memory through ARMCI_Malloc()
every time we need to allocate a shareable object. We
allocate a single, large chunk of memory from ARMCI
and then use a specialized heap manager for allocate
and deallocate sub-chunks from it.

Our heap manager takes advantage of the fact that
the sizes of objects that will be shared through ARMCI
are known at compile time: events have a fixed size
that depends only on the compile-time size of their
constituent TypeMaps. Other objects that are allocated
on the ARMCI heap (list links, etc.), also have known
sizes and are much smaller than the event objects.

To simplify heap management and facilitate the
creation of classes that allocate objects on the ARMCI
heap, we created a base class named
ARMCIAllocatable that provides specialized new()
and delete() methods that allocate instances on the
ARMCI heap. Thus allocating an event object on the
publisher that will be accessible to remote subscriber
processes becomes simply:

 Event *ev = new Event;

The main limitation that our approach has is that
any pointers or references inside an object allocated on
the ARMCI heap must be to other objects on the
ARMCI heap. Importantly the transfer of these objects
to a remote address space (through ARMCI_Get() or
ARMCI_Put()) is explicit and thus any pointer links
must be followed explicitly. For this reason, our Event
objects have no links or references within them and
have their member TypeMaps fully embedded within
them.

5. Preliminary Performance Results

In order to test the performance and functionality of
our event service implementation, we created a test
application that executes the event service on a Cray
XD-1 platform on different numbers of processors.
The Cray XD-1 system is a distributed memory HPC
cluster. On the XD-1, dual-processor AMD Opteron
SMP nodes are connected through a high-speed
proprietary Cray interconnect named RapidArray [10].

Our test application initializes the event service and
then a single publisher proceeds to publish 2500 events
of a fixed size. Different numbers of subscribers will
then consume those events from the publisher’s
memory. The consumption of events simply counts
the number of entries in the event’s TypeMaps. The
application measures the number of events that can be
processed per second for a different number of
subscribers.

Figure 6 presents the number of events processed
per second for different numbers of subscribers (1 to
16) and for two different event sizes: small (4 KB) and
large (50 KB). The number of events processed per
second ranges from 66,560 for the small event size on
one subscriber to 954 for the large event size on 16
subscribers. The performance drops off as the number
of subscribers increases due to contention on the
memory subsystem and RapidArray network port for
the publisher node.

We used both processors on the Cray XD-1’s nodes
for executing our test application. It is important to
note that for the 50 KB event size the achieved data
rate (size of events times the number of events/second)
using one subscriber is 1006 MB/sec (50 KB * 20995
events/second), which is comparable to the raw MPI
bandwidth we measured for the same data size (1200
MB/sec) between two nodes. The event data rate
includes the overhead in performing processing of the
event, while the MPI data rate includes only the data
transfer time.

char evBuf[SIZE_EVENT];

…

ARMCI_Get(remotePtr, evBuf, SIZE_EVENT,
publisher);

Event *ev = reinterpret_cast<Event *>(evBuf);

listener.processEvent(*ev);

Figure 5: Accessing an event on a subscriber
process

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Processing Rate

0.00

10,000.00

20,000.00

30,000.00

40,000.00

50,000.00

60,000.00

70,000.00

1 2 4 8 16

of subscribers

Ev
en

ts
/S

ec
on

d

50 KB event size
4 KB event size

Figure 6: Event processing rate for different
numbers of subscribers

These results indicate that our scheme which places
the data on the publisher’s local memory to be
remotely consumed by the subscribers requires a
careful balance between the number of subscribers and
the capability of the publisher to serve their requests.
However, with a small number of concurrent
subscribers (<= 2) our object-oriented scheme is able
to achieve high performance that approaches that of
raw HPC message passing using MPI.

6. Conclusions and Further Work

We have demonstrated the feasibility of
implementing a publish-subscribe based event service
on an HPC platform, which supports high-level object-
oriented interfaces and can achieve high performance
comparable to raw message passing using MPI. Our
scheme uses a pull-based strategy in which subscribers
remotely consume events from a publisher’s memory
which limits its scalability with higher numbers of
concurrent subscribers.

As future work, we plan to study alternative
publish-subscribe schemes, such as a push-based
strategy in which the publisher remotely places events
onto the consumer’s memories, and other possibilities
include taking advantage of networking techniques
such as multicast to reduce the need for the publisher
to individually send data to each subscriber. Another
possibility within a pull-based approach is to replicate
the published data onto a set of nodes such that no
single node becomes a bottleneck.

7. References
[1] Y. Ashlad, B. E. Martin, M. Marathe, C. Le.
Asynchronous notifications among distributed objects. In
Procs Conf on Object-Oriented Technologies and Systems.
Usenix Association, June 1996.
[2] http://www.omg.org/technology/documents/
corbaservices_spec_catalog.htm

[3] http://java.sun.com/products/jms/
[4] P. Tran, J. Gosper, I. Gorton: Evaluating the sustained
performance of COTS-based messaging systems. Softw.
Test., Verif. Reliab. 13(4): 229-240 (2003)
[5] S. Chen, P. Greenfield: QoS Evaluation of JMS: An
Empirical Approach. HICSS-37, January 5-8, IEEE, 2004
[6] C.R. Johnson, S.G. Parker, and D.M. Weinstein.
"Component-Based Problem Solving Environments for
Large-Scale Scientific Computing," Concurrency and
Computation: Practice and Experience, 2002 14:1337-1349.
[7] J. Nieplocha, V. Tipparaju, M. Krishnan, D. Panda. High
Performance Remote Memory Access Comunications: The
ARMCI Approach. Int. J. High Performance Computing and
Applications, Vol 20(2), 233-253p, 2006
[8] R. Armstrong, G. Kumfert, L. Curfman McInnes, S.
Parker, B. Allan, M. Sottile, T. Epperly, T. Dahlgren. The
CCA Component Model for High-Performance Computing.
Concurrency and Computing: Practice and Experience,
18(2):215--229, 2006
[9] Eisenhauer, G., Bustamante, F. E.,Schwan, K.. Event
Services for High Performance Computing. In Procs 9th
IEEE Int. Syp. on High Performance Distributed Computing
(Hpdc'00) (August 01 - 04, 2000).. IEEE
[10] Tripp, J. L., Hanson, A. A., Gokhale, M., and Morveit,
H. Partitioning Hardware and Software for Reconfigurable
Supercomputing Applications: A Case Study. In SC ’05:
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, page 27, Washington, DC, USA, 2005.
IEEE Computer Society.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

