
Performance Measurement of Novice HPC Programmers’ Code

Rola Alameh, Nico Zazworka, Jeffrey K. Hollingsworth
University of Maryland

{rolasa, nico, hollings}@cs.umd.edu

Abstract

Performance is one of the key factors of improving

productivity in High Performance Computing (HPC).
In this paper we discuss current studies in the field of
performance measurement of codes captured in class-
room experiments for the High Productivity Computing
Project (HPCS). We give two examples of measure-
ments introducing two new hypotheses: spending more
effort doesn’t always result in improvement of per-
formance for novices; the use of higher level MPI func-
tions promises better performance for novices. We also
present a tool - the Automated Performance Measure-
ment System (APMS). APMS helps to partially auto-
mate the measurement of the performance of a set of
parallel programs with several inputs. The design and
implementation of the tool is flexible enough to allow
other researchers to conduct similar studies.

1. Introduction

As part of the High Productivity Computing Sys-
tems (HPCS) project, the Development Time Working
Group captured data from over 20 High Performance
Computing (HPC) classes at several universities in the
United States [1]. The question we address is: how
productive are beginner programmers in HPC? There-
fore we are recording different kinds of measurements
such as effort data, defect rates, background informa-
tion and work flow data to find evidence for hypotheses
about how student programmers work and lean. The
results should allow us to give advice to vendors, create
tools to improve productivity and to come up with new
learning concepts for HPC.

In previous studies, we have looked at many of
these questions [1, 2]. However, the performance of
student programs has not previously been measured.
This measurement is essential in the field of HPC
where the goal is to run programs faster using parallel
computation.

The data we collected consists of information
manually recorded by participants and data automati-
cally captured by an instrumentation package1. This
package captures all source code versions for every
compile for every student and assignment.

The performance related questions we would like to
answer include: what level of performance do novice
programmers achieve with their programs, and what
variables, if any, affect this performance? The results
could support evidence for hypotheses such as: stu-
dents who spend more effort on their assignments get
better performance results. Alternatively, the results
could point to common defects that result in perform-
ance bottlenecks. We could also compare the results to
performance results of code that was written by profes-
sional programmers to investigate the gap (if it exists)
between them.

Our study approach requires us to run all relevant
student programs multiple times, on multiple input sets,
on a varying number of processors. To complicate mat-
ters, we frequently want to perform longitudinal studies
across similar assignments from different semesters.
Unfortunately, while the assignments from different
classes are similar, details such as command line argu-
ments, and input file formats often change from as-
signment to assignment. We needed a tool that could
automate both running the programs and eliding these
minor differences. For this reason, we developed the
Automated Performance Measurement System (APMS)
which is a web-based tool that automates the process of
running a large number of student codes. We describe
our APMS tool in the next section. In the subsequent
section, we present preliminary studies that illustrate
what measurement results look like and what hypothe-
ses they point to.

2. APMS

Capturing the characteristics of a program’s per-
formance requires running it on multiple sets of inputs.

1 http://care.cs.umd.edu:8080/hpcs/software/umdinst

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Typically in HPC these inputs include: the number of
processors the program should be executed on, and
problem-specific parameters such as grid sizes, number
of iterations, or convergence thresholds Furthermore
even running one set of inputs multiple times can be
useful since run time fluctuates between runs due to
external factors of the runtime environment. Therefore,
measuring performance of codes by hand, on every
combination of inputs, can be tedious, time consuming
and error prone.

The goal of the APMS is the measurement of per-
formance of parallel codes in an automated way. It is
designed to make the job of measuring faster and easier
and to provide all information the user would get if the
program was executed manually. This includes process
exit status, error and warning messages generated and
output produced. This goal generates a set of functional
requirements, which we will discuss in the following
subsection, followed by the system design and the deci-
sions made to achieve the desired functionality.

2.1. System functionality

APMS measures performance metrics for a set of
parallel programs on a set of input parameters. The
system reads source code from and writes results to the
HPCS database, to enable the user later to aggregate
performance data with other data that was captured
during the classroom studies (e.g. workflow, effort and
defect data). The system is fully automatic: once the
criteria for programs to run are defined, the user
doesn’t need to interact with the system while the
programs are executing. This feature is useful since
although individual runs of programs are typically only
a few seconds, a full performance study could require
hundreds or thousands of individual program
executions.

Alongside the performance measurement, APMS
provides the user with the capability of deciding if
program outputs are correct. Even if performance is the
only variable being studied, correctness must also be
verified since performance measurement results are
only valid if the program produces the correct result.
Judging the program correctness is not done
automatically; instead the tool aims to visually display
program outputs along side a known good output to
facilitate the comparison of their contents, and provides
an interface for the users to record their correctness
decision.

The tool also allows the user to choose the
performance metrics that should be measured.
Performance metrics can vary depending on the
purpose of measurement. If the goal is to measure

overall speedup, the user would need to measure the
total execution time. If the user needs more detailed
information (like measures related to the machine
architecture), lower-level metrics are needed, such as
floating point instructions per second, memory and
cache accesses.

2.2. System design

APMS was developed in Java using Java Server
Pages technology. The system is divided into 4 mod-
ules (Figure 1).

2.2.1. Web interface. The system is accessed through
a web browser. The user can select source files from
the database, define input parameters and a set of
possible values for each of them, then start the
compilation, execution and performance measurement
on a target cluster, and finally observe the results.

Figure 1: Architecture of APMS

One tricky part of developing such as system is how

to specify the adaptation layer to manage mapping
program parameters and input file formats between the
formats used in different classes. In fact, it turned out
that frequently the assignment for a class was under
specified, and even within one class students did not
use the same pattern to pass input parameters to their
programs. For example, some classes expected input
options from a specific file name, while, others read
them from command line arguments and some had a
mix of both techniques.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

To handle these combinations we came up with a
simple language that allows specifying parameters,
their corresponding values, and the format for passing
them to the program. We omit the details of this lan-
guage due to space restrictions.

2.2.2. Instrumentation module. Our ultimate goal for
the tool is to support measurement for most
programming models in the HPC field. We started with
the most widely used programming model, which also
happens to be the model from which we have most
student codes: MPI based on the C programming
language. To collect performance measurement for
MPI + C programs, we are using the PAPI library [3],
which provides a consistent interface to the
performance counter hardware found on most parallel
machines.

The tool currently supports collecting the real time,
CPU time (time spent in user mode), number of float-
ing point instructions (FLOPS), and FLOPS per sec-
ond. Additional PAPI events could easily be added.

Since the data collection component of the tool only
requires functions to be called at the start and end of a
parallel program, it would be easy to add support for
additional languages and programming models. The
data collection could still be provided via PAPI.

2.2.3. Run module. This module handles compiling
and running the programs on the cluster.

The run module handles parallel environment
issues. For instance, it handles launching each program
through a parallel machine’s job scheduler. It also
allows the user to input an upper bound of how long the
program should take to run. A job that goes beyond this
time is automatically killed.

Once a program run is completed, all outputs
generated (whether written to standard output or to
files) are stored in the database and available to the tool
user, who determines the correctness of the program.

2.2.4. Controller module. This module is the central
piece that connects all other modules and handles all
necessary file and data transfers between the different
components.

3. Measurements and analysis

Our overall goal is to characterize the performance
of student code focusing on: comparing the perform-
ance of code written by novices to the performance of
code written by experts; studying the relationship be-
tween performance and variables like the effort spent to
develop the program, the teaching methods used to
train the novices or the experience level of the pro-

grammer in areas inside and outside the computer sci-
ence domain (e.g. math, physics).

As a starting point for our study, we surveyed the
range of performance that is achievable by students.
For this purpose, we chose from our pool of assign-
ments two problem types: the conjugate gradient prob-
lem and the game of life. Due to a delay in storing stu-
dent submissions into the database, we manually in-
serted PAPI calls in each program and transferred the
files to the target cluster before running the programs.

3.1. Conjugate gradient

For the conjugate gradient, we found 5 student sub-
missions from the same class, written in C based on
MPI. One of the 5 versions was incorrect. The remain-
ing four were run on 1, 2, 4 and 8 processors with two
sizes (8,000 and 8,000,000) of the input matrix.

Figures 2 and 3 show results from 3 students (s1, s2,
s3) because the fourth student program ran for rela-
tively too long (1.4s on 8 processors for a matrix of
size of 8,000 x 8,000 and over 2 hours for a matrix of
size 8,000,000 x 8,000,000). The plots show that stu-
dents do achieve speedup (some more than others).

Figure 2: Time to run in seconds using matrix

of size 8,000 x 8,000.

Figure 3: Time to run in seconds using matrix

of size 8,000,000 x 8,000,000.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

We see that the input size influences the speedup
achieved as we scale the number of processors. For the
matrix of 8,000, student 2 starts to achieve speedup
from 2 processors, whereas with the matrix of
8,000,000, using 2 processors takes more time than 1
processor. The time to run then decreases again with 4
processors but increases with 8 (it took more than 2
hours to run, which is the reason why that point is not
shown in Figure 3).

3.2. Game of life

Because of the small number of results, we chose
another problem, the game of life. We found three run-
ning versions (S3 – S5) from one class and seven from
another. These versions were tested using a grid size of
250 x 250 with a relatively high number of life forms.
We ran the program for 1,000 generations on 1, 2, 4, 8
and 16 processors. Effort information is available for
the 3 students from the first class, and for 2 students
from the second class (S11, S12). Code from student
S11 didn’t run on one processor, but gave the correct
output on more processors. The effort is measured in
hours. Table 1 summarizes the results.

Table 1: Time to run in seconds for 1, 2 and
4, 8, 16 processors and effort for each student.

Processors

1 2 4 8 16
Effort

S3 0.08 0.06 0.06 0.05 0.04 66
S4 0.07 0.07 0.08 0.19 0.04 47
S5 0.03 4.14 11.4 25.2 33.2 49
S6 0.73 0.37 0.19 0.13 0.08 NA
S7 0.34 0.17 0.09 0.08 0.04 NA
S8 0.34 0.25 0.18 0.39 0.29 NA
S9 1.18 0.67 0.56 0.36 0.25 NA

S10 0.26 0.14 0.09 0.21 0.04 NA
S11 NA 0.17 0.08 0.05 0.05 18
S12 0.27 0.22 0.19 0.91 0.75 14

We noticed that the program belonging to the per-

son who spent the most effort on the assignment got a
very good overall performance (it either runs faster or
at the same speed as others). However, the person who
spent the second most amount of effort on the assign-
ment produced the slowest program (Table 2).

Another interesting fact can be noted from the Fig-
ures 4 and 5. Each of these plots shows the perform-
ance of programs of two students with similar effort.
However, in Figure 4, the student who spent more ef-
fort on the assignment wrote a slower program. The
situation is reversed in Figure 5. These results suggest
that novices who spend more time programming do not
necessarily produce faster programs. Of course, to sup-

port this hypothesis a larger number of data points is
needed.

Figure 4: Time to run versus number of proc-

essors for students S3 and S2.

Figure 5: Time to run versus number of proc-

essors for students S9 and S10.

Besides the effort, we wondered whether the use of
specific MPI functions by novices results in better per-
formance. Therefore we categorized the functions in 3
groups: base functions (MPI_Send, MPI_Recv,
MPI_Barrier) that would be enough to solve the prob-
lem, non-blocking functions (MPI_Ssend, MPI_Isend,
MPI_Irecv, MPI_SendRecv, MPI_Wait) that are asyn-
chronous versions of the low level ones and collective
functions (MPI_Bcast, MPI_Reduce, MPI_Scatter,
MPI_Gather) that move beyond point to point commu-
nication and allow groups of nodes to exchange data.

We ranked all subjects by the performance they
achieved on all processors (by ranking each of them on
each processor and calculating the mean of all rank-
ings). As Table 2 shows, subjects that used higher level
communication functions got better performance than
students that used basic ones.

We believe that higher level communication con-
cepts increase the overall performance of novice pro-
grams but we have to investigate more data to build

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

evidence and see if this is also the case for other paral-
lel languages.

Table 2: Student ranking (fastest to slowest
run time) and number of various types of MPI

routines called.
Rank ID Base Non-Blocking Collective

1 S3 1 1 1
2 S4 2 1 1
3 S11 2 0 3
4 S10 2 2 0
5 S7 0 3 0
6 S6 2 0 0
7 S8 3 0 0
8 S12 2 1 0
9 S9 2 1 0

10 S5 3 0 0

4. Related Work

 There are several other tools that provide auto-
mated systems to run programs and to capture output.
For example, DART[4], provides a way to automate
testing of a software packages on a variety of platforms
and compilers. Also tools such as PerfTrack[5] and
TAU’s Performance Database[6] provide a way to re-
cord the performance evolution of a single application
over time. However, our work differs in that our focus
is gathering performance data and supporting running
multiple different implementations of the same func-
tionality.

5. Conclusion

We have developed a prototype of the APMS sys-
tem. Currently the tool performs automatic instrumen-
tation for MPI+C programs. It can handle programs
written in a single source file or in multiple files, as
long as they are stored in the database. Future plans for
the tool focus on improving the user interface for flexi-
bility, as well as adding functionality. The tool will be
developed further to include functions for drawing
graphs and diagrams based on the measurement results
collected. Support for more programming languages
and programming models is required. In addition, we
plan to allow uploading source files that are not in the
database.

In our research, we are investigating performance
from a new perspective: focusing on improving the
programmer, rather than the language or machine.
Hardware and programming model, however, are not
taken out of the equation. On the contrary, we expect
that they will play an important role as environment

variables. Our long term goal is to understand what
works best under which circumstances.

Our preliminary results show that the relationship
between effort and performance isn’t straightforward as
expected. Other variables, such as the type of functions
used, might have a greater impact on performance. This
suggests that the work flow of programming plays an
important role. These hypotheses need further study
based on a larger set of data points. We hope with time,
APMS will evolve, making more complicated studies,
involving a combination of variables, feasible.

6. Acknowledgments

This research was supported in part by Department
of Energy contract DE-FG02-04ER25633, NSF grant
EIA-0080206, and Air Force grant FA8750-05-1-0100.
We would like to thank the HPCS development time
working group members for their support.

7. References
[1] Hochstein L., J. Carver, F. Shull, S. Asgari, V. Basili, J.

K. Hollingsworth, M. Zelkowitz, HPC Programmer Pro-
ductivity: A Case Study of Novice HPC Programmers,
Supercomputing 2005, Seattle, WA, November 2005.

 [2] Carver, J., Asgari, S., Basili, V., Hochstein, L.,

Hollingsworth J. K., Shull, F., and Zelkowitz, M. Study-
ing code development for high performance computing:
the HPCS program. In Proceedings of the International
Workshop on Software Engineering for High Performance
Computing Systems Applications (SE-HPCS ’04), May
2004

[3] Browne, S., J. Dongarra, N. Garner, G. Ho, and P. Mucci.

“A Portable Programming Interface for Performance
Evaluation on Modern Processors”, International Journal
of High-Performance Computing Applications 14:3, fall
2000, pp. 189-204.

[4] A. Memon, I. Banerjee, N. Hashmi, and A. Nagarajan

“DART: A Framework for Regression Testing
Nightly/daily Builds of GUI Applications”, Proceedings
of the International Conference on Software Mainte-
nance, 2003.

[5] K. L. Karavanic, J. May, K. Mohror, B. Miller, K. Huck,

R. Knapp, B. Pugh “Integrating Database Technology
with Comparison-based Parallel Performance Diagnosis:
The PerfTrack Performance Experiment Management
Tool”, Proceedings of SC’05, Nov. 2005, Seattle WA.

[6] K. Huck, A.D. Malony, R. Bell, A. Morris, "Design and

Implementation of a Parallel Performance Data Manage-
ment Framework," 2005 International Conference on Par-
allel Processing (ICPP), Oslo, Norway, 2005.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

