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Abstract 

 
Performance is one of the key factors of improving 

productivity in High Performance Computing (HPC). 
In this paper we discuss current studies in the field of 
performance measurement of codes captured in class-
room experiments for the High Productivity Computing 
Project (HPCS). We give two examples of measure-
ments introducing two new hypotheses: spending more 
effort doesn’t always result in improvement of per-
formance for novices; the use of higher level MPI func-
tions promises better performance for novices. We also 
present a tool - the Automated Performance Measure-
ment System (APMS). APMS helps to partially auto-
mate the measurement of the performance of a set of 
parallel programs with several inputs. The design and 
implementation of the tool is flexible enough to allow 
other researchers to conduct similar studies.  
 
1. Introduction 
 

As part of the High Productivity Computing Sys-
tems (HPCS) project, the Development Time Working 
Group captured data from over 20 High Performance 
Computing (HPC) classes at several universities in the 
United States [1]. The question we address is: how 
productive are beginner programmers in HPC? There-
fore we are recording different kinds of measurements 
such as effort data, defect rates, background informa-
tion and work flow data to find evidence for hypotheses 
about how student programmers work and lean. The 
results should allow us to give advice to vendors, create 
tools to improve productivity and to come up with new 
learning concepts for HPC.  

In previous studies, we have looked at many of 
these questions [1, 2]. However, the performance of 
student programs has not previously been measured. 
This measurement is essential in the field of HPC 
where the goal is to run programs faster using parallel 
computation. 

The data we collected consists of information 
manually recorded by participants and data automati-
cally captured by an instrumentation package1. This 
package captures all source code versions for every 
compile for every student and assignment. 

The performance related questions we would like to 
answer include: what level of performance do novice 
programmers achieve with their programs, and what 
variables, if any, affect this performance? The results 
could support evidence for hypotheses such as: stu-
dents who spend more effort on their assignments get 
better performance results. Alternatively, the results 
could point to common defects that result in perform-
ance bottlenecks. We could also compare the results to 
performance results of code that was written by profes-
sional programmers to investigate the gap (if it exists) 
between them. 

Our study approach requires us to run all relevant 
student programs multiple times, on multiple input sets, 
on a varying number of processors. To complicate mat-
ters, we frequently want to perform longitudinal studies 
across similar assignments from different semesters.   
Unfortunately, while the assignments from different 
classes are similar, details such as command line argu-
ments, and input file formats often change from as-
signment to assignment. We needed a tool that could 
automate both running the programs and eliding these 
minor differences. For this reason, we developed the 
Automated Performance Measurement System (APMS) 
which is a web-based tool that automates the process of 
running a large number of student codes. We describe 
our APMS tool in the next section. In the subsequent 
section, we present preliminary studies that illustrate 
what measurement results look like and what hypothe-
ses they point to.  
 
2. APMS 

Capturing the characteristics of a program’s per-
formance requires running it on multiple sets of inputs. 

                                                           
1 http://care.cs.umd.edu:8080/hpcs/software/umdinst 
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Typically in HPC these inputs include: the number of 
processors the program should be executed on, and 
problem-specific parameters such as grid sizes, number 
of iterations, or convergence thresholds Furthermore 
even running one set of inputs multiple times can be 
useful since run time fluctuates between runs due to 
external factors of the runtime environment. Therefore, 
measuring performance of codes by hand, on every 
combination of inputs, can be tedious, time consuming 
and error prone.  

The goal of the APMS is the measurement of per-
formance of parallel codes in an automated way. It is 
designed to make the job of measuring faster and easier 
and to provide all information the user would get if the 
program was executed manually. This includes process 
exit status, error and warning messages generated and 
output produced. This goal generates a set of functional 
requirements, which we will discuss in the following 
subsection, followed by the system design and the deci-
sions made to achieve the desired functionality. 
 
2.1. System functionality 
 

APMS measures performance metrics for a set of 
parallel programs on a set of input parameters. The 
system reads source code from and writes results to the 
HPCS database, to enable the user later to aggregate 
performance data with other data that was captured 
during the classroom studies (e.g. workflow, effort and 
defect data). The system is fully automatic: once the 
criteria for programs to run are defined, the user 
doesn’t need to interact with the system while the 
programs are executing.  This feature is useful since 
although individual runs of programs are typically only 
a few seconds, a full performance study could require 
hundreds or thousands of individual program 
executions.     

Alongside the performance measurement, APMS 
provides the user with the capability of deciding if 
program outputs are correct. Even if performance is the 
only variable being studied, correctness must also be 
verified since performance measurement results are 
only valid if the program produces the correct result. 
Judging the program correctness is not done 
automatically; instead the tool aims to visually display 
program outputs along side a known good output to 
facilitate the comparison of their contents, and provides 
an interface for the users to record their correctness 
decision.  

The tool also allows the user to choose the 
performance metrics that should be measured. 
Performance metrics can vary depending on the 
purpose of measurement. If the goal is to measure 

overall speedup, the user would need to measure the 
total execution time. If the user needs more detailed 
information (like measures related to the machine 
architecture), lower-level metrics are needed, such as 
floating point instructions per second, memory and 
cache accesses. 
 
2.2. System design 
 

APMS was developed in Java using Java Server 
Pages technology. The system is divided into 4 mod-
ules (Figure 1).  
 
2.2.1. Web interface. The system is accessed through 
a web browser. The user can select source files from 
the database, define input parameters and a set of 
possible values for each of them, then start the 
compilation, execution and performance measurement 
on a target cluster, and finally observe the results.  
 

 
Figure 1: Architecture of APMS 

 
One tricky part of developing such as system is how 

to specify the adaptation layer to manage mapping 
program parameters and input file formats between the 
formats used in different classes.  In fact, it turned out 
that frequently the assignment for a class was under 
specified, and even within one class students did not 
use the same pattern to pass input parameters to their 
programs. For example, some classes expected input 
options from a specific file name, while, others read 
them from command line arguments and some had a 
mix of both techniques.  
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To handle these combinations we came up with a 
simple language that allows specifying parameters, 
their corresponding values, and the format for passing 
them to the program. We omit the details of this lan-
guage due to space restrictions.  
 
2.2.2. Instrumentation module. Our ultimate goal for 
the tool is to support measurement for most 
programming models in the HPC field. We started with 
the most widely used programming model, which also 
happens to be the model from which we have most 
student codes: MPI based on the C programming 
language. To collect performance measurement for 
MPI + C programs, we are using the PAPI library [3], 
which provides a consistent interface to the 
performance counter hardware found on most parallel 
machines.  

The tool currently supports collecting the real time, 
CPU time (time spent in user mode), number of float-
ing point instructions (FLOPS), and FLOPS per sec-
ond. Additional PAPI events could easily be added. 

Since the data collection component of the tool only 
requires functions to be called at the start and end of a 
parallel program, it would be easy to add support for 
additional languages and programming models.  The 
data collection could still be provided via PAPI.  
 
2.2.3. Run module. This module handles compiling 
and running the programs on the cluster.  

The run module handles parallel environment 
issues. For instance, it handles launching each program 
through a parallel machine’s job scheduler. It also 
allows the user to input an upper bound of how long the 
program should take to run. A job that goes beyond this 
time is automatically killed. 

Once a program run is completed, all outputs 
generated (whether written to standard output or to 
files) are stored in the database and available to the tool 
user, who determines the correctness of the program. 

 
2.2.4. Controller module. This module is the central 
piece that connects all other modules and handles all 
necessary file and data transfers between the different 
components.  
 
3. Measurements and analysis 

Our overall goal is to characterize the performance 
of student code focusing on: comparing the perform-
ance of code written by novices to the performance of 
code written by experts; studying the relationship be-
tween performance and variables like the effort spent to 
develop the program, the teaching methods used to 
train the novices or the experience level of the pro-

grammer in areas inside and outside the computer sci-
ence domain (e.g. math, physics). 

As a starting point for our study, we surveyed the 
range of performance that is achievable by students. 
For this purpose, we chose from our pool of assign-
ments two problem types: the conjugate gradient prob-
lem and the game of life. Due to a delay in storing stu-
dent submissions into the database, we manually in-
serted PAPI calls in each program and transferred the 
files to the target cluster before running the programs. 

 
3.1. Conjugate gradient  

For the conjugate gradient, we found 5 student sub-
missions from the same class, written in C based on 
MPI. One of the 5 versions was incorrect. The remain-
ing four were run on 1, 2, 4 and 8 processors with two 
sizes (8,000 and 8,000,000) of the input matrix.  

Figures 2 and 3 show results from 3 students (s1, s2, 
s3) because the fourth student program ran for rela-
tively too long (1.4s on 8 processors for a matrix of 
size of 8,000 x 8,000 and over 2 hours for a matrix of 
size 8,000,000 x 8,000,000). The plots show that stu-
dents do achieve speedup (some more than others). 

 

 
Figure 2: Time to run in seconds using matrix 

of size 8,000 x 8,000. 
 

 
Figure 3: Time to run in seconds using matrix 

of size 8,000,000 x 8,000,000. 
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We see that the input size influences the speedup 
achieved as we scale the number of processors. For the 
matrix of 8,000, student 2 starts to achieve speedup 
from 2 processors, whereas with the matrix of 
8,000,000, using 2 processors takes more time than 1 
processor. The time to run then decreases again with 4 
processors but increases with 8 (it took more than 2 
hours to run, which is the reason why that point is not 
shown  in Figure 3). 
 
3.2. Game of life 

Because of the small number of results, we chose 
another problem, the game of life. We found three run-
ning versions (S3 – S5) from one class and seven from 
another. These versions were tested using a grid size of 
250 x 250 with a relatively high number of life forms. 
We ran the program for 1,000 generations on 1, 2, 4, 8 
and 16 processors. Effort information is available for 
the 3 students from the first class, and for 2 students 
from the second class (S11, S12). Code from student 
S11 didn’t run on one processor, but gave the correct 
output on more processors. The effort is measured in 
hours. Table 1 summarizes the results. 

Table 1: Time to run in seconds for 1, 2 and 
4, 8, 16 processors and effort for each student. 

Processors 
 

1  2  4  8  16  
Effort 

S3 0.08 0.06 0.06 0.05 0.04 66 
S4 0.07 0.07 0.08 0.19 0.04 47 
S5 0.03 4.14 11.4 25.2 33.2 49 
S6 0.73 0.37 0.19 0.13 0.08 NA 
S7 0.34 0.17 0.09 0.08 0.04 NA 
S8 0.34 0.25 0.18 0.39 0.29 NA 
S9 1.18 0.67 0.56 0.36 0.25 NA 

S10 0.26 0.14 0.09 0.21 0.04 NA 
S11 NA 0.17 0.08 0.05 0.05 18 
S12 0.27 0.22 0.19 0.91 0.75 14 

 
We noticed that the program belonging to the per-

son who spent the most effort on the assignment got a 
very good overall performance (it either runs faster or 
at the same speed as others). However, the person who 
spent the second most amount of effort on the assign-
ment produced the slowest program (Table 2). 

Another interesting fact can be noted from the Fig-
ures 4 and 5. Each of these plots shows the perform-
ance of programs of two students with similar effort. 
However, in Figure 4, the student who spent more ef-
fort on the assignment wrote a slower program. The 
situation is reversed in Figure 5. These results suggest 
that novices who spend more time programming do not 
necessarily produce faster programs. Of course, to sup-

port this hypothesis a larger number of data points is 
needed. 

 
Figure 4: Time to run versus number of proc-

essors for students S3 and S2. 
 

 
Figure 5: Time to run versus number of proc-

essors for students S9 and S10. 
 

Besides the effort, we wondered whether the use of 
specific MPI functions by novices results in better per-
formance. Therefore we categorized the functions in 3 
groups: base functions (MPI_Send, MPI_Recv, 
MPI_Barrier) that would be enough to solve the prob-
lem, non-blocking functions (MPI_Ssend, MPI_Isend, 
MPI_Irecv, MPI_SendRecv, MPI_Wait) that are asyn-
chronous versions of the low level ones and collective 
functions (MPI_Bcast, MPI_Reduce, MPI_Scatter, 
MPI_Gather) that move beyond point to point commu-
nication and allow groups of nodes to exchange data. 

We ranked all subjects by the performance they 
achieved on all processors (by ranking each of them on 
each processor and calculating the mean of all rank-
ings). As Table 2 shows, subjects that used higher level 
communication functions got better performance than 
students that used basic ones.  

We believe that higher level communication con-
cepts increase the overall performance of novice pro-
grams but we have to investigate more data to build 
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evidence and see if this is also the case for other paral-
lel languages. 

Table 2: Student ranking (fastest to slowest 
run time) and number of various types of MPI 

routines called. 
Rank ID Base Non-Blocking Collective 

1 S3 1 1 1 
2 S4 2 1 1 
3 S11 2 0 3 
4 S10 2 2 0 
5 S7 0 3 0 
6 S6 2 0 0 
7 S8 3 0 0 
8 S12 2 1 0 
9 S9 2 1 0 

10 S5 3 0 0 
 
4. Related Work 

    There are several other tools that provide auto-
mated systems to run programs and to capture output.  
For example, DART[4], provides a way to automate 
testing of a software packages on a variety of platforms 
and compilers. Also tools such as PerfTrack[5] and 
TAU’s Performance Database[6] provide a way to re-
cord the performance evolution of a single application 
over time. However, our work differs in that our focus 
is gathering performance data and supporting running 
multiple different implementations of the same func-
tionality. 
 
5. Conclusion 

We have developed a prototype of the APMS sys-
tem. Currently the tool performs automatic instrumen-
tation for MPI+C programs. It can handle programs 
written in a single source file or in multiple files, as 
long as they are stored in the database. Future plans for 
the tool focus on improving the user interface for flexi-
bility, as well as adding functionality. The tool will be 
developed further to include functions for drawing 
graphs and diagrams based on the measurement results 
collected. Support for more programming languages 
and programming models is required. In addition, we 
plan to allow uploading source files that are not in the 
database. 

In our research, we are investigating performance 
from a new perspective: focusing on improving the 
programmer, rather than the language or machine. 
Hardware and programming model, however, are not 
taken out of the equation. On the contrary, we expect 
that they will play an important role as environment 

variables. Our long term goal is to understand what 
works best under which circumstances. 

Our preliminary results show that the relationship 
between effort and performance isn’t straightforward as 
expected. Other variables, such as the type of functions 
used, might have a greater impact on performance. This 
suggests that the work flow of programming plays an 
important role. These hypotheses need further study 
based on a larger set of data points. We hope with time, 
APMS will evolve, making more complicated studies, 
involving a combination of variables, feasible. 
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