
Beyond Performance Tools: Measuring and Modeling Productivity in HPC

Michael O. McCracken
UCSD CSE

mike@cs.ucsd.edu

Nicole Wolter
San Diego Supercomputer Center

nickel@sdsc.edu

Allan Snavely
UCSD CSE

allans@sdsc.edu

Abstract

Emerging challenges to productivity are not well covered
by traditional methods for evaluating HPC programs, sys-
tems, and practices. The common measure of merit widely
put forward in High-Performance Computing (HPC), high
computational performance as measured in floating-point
operations per second (FLOPs), does not account for many
bottlenecks in real HPC workflow that increase time to solu-
tion which are unaffected by performance changes. In this
paper we discuss these bottlenecks, show an approach to
analyzing productivity based on measurement and modeling
of HPC workflow, and present plans for measurement and
experimentation tools to study and improve productivity in
HPC projects with large computational and data require-
ments.

1 Introduction

Using high-performance computing (HPC) resources is
a prerequisite for a great deal of current scientific research.
Projects using those resources require a great deal of effort,
knowledge, and planning to be successful and productive.
Simply having access to the most recent technology is not
a guarantee of success. Recent research into the productiv-
ity of HPC systems and users has explored the relationship
between time, effort and productive returns, by quantifying
development time effort [4, 5, 10], queue wait times, large
project success factors [8, 2], and by more clearly defining
productivity itself [6]. In this paper, we discuss work toward
measuring and modeling the productivity of HPC users in
the context of multi-site allocations with large computa-
tional and data requirements. The subsequent goals are for
supporting a better understanding of productivity in HPC
and building tools to help users become more productive.
Because the exact definition of the total time-to-solution can
change depending on the project and its current goals, we do
not propose a single definition of productivity here. Instead,
we present a method and propose tools that allow analysis
of productivity however it is defined for a project.

To be productive, computational scientists are faced
with an optimization problem with important trade-offs be-
tween time spent optimizing their research workflow and
time spent generating research results. Because of chang-
ing policies, system and network conditions, architectures,
and research goals, high productivity can only be achieved
through striking a balance between improving code and us-
ing it. Unfortunately, the information needed to make de-
cisions about these trade-offs is often uncertain or unavail-
able. For example, queue wait times are often unpredictable
and site scheduling policies are dynamic and are not always
publicized. Decisions about whether or not to optimize are
usually made without a good estimate of the performance
improvement to be expected.

In studies of user behavior and experiences [12], we
found that user attitudes toward existing performance tools
reflected that current tools do not address some of the most
significant roadblocks to productivity that users experience.
In fact, one user with large computational and data require-
ments described computational performance as “sinking to-
ward the bottom” [3] of the list of bottlenecks to getting
results. Problems such as queue wait time, data transfer
speed, storage capacity, portability, and reliability are often
more pressing, but are not currently addressed by perfor-
mance tools. We think that there is a need for tools which
support measurement and analysis of these problems along-
side program performance. We further suggest that given
a productivity tool that measures productivity factors and
supports decisions about the trade-offs inherent in HPC us-
age, users will be able to diagnose productivity problems
more easily and generate results faster with less time spent
waiting. This work is the beginning of a course of research
which will test that hypothesis.

2 Productivity Analysis

A natural approach to studying the causes of productiv-
ity loss is to apply methods developed for studying causes
of performance loss. Therefore, the first step in analyzing
a productivity problem is to determine the set of tasks that
define the user’s workflow, and measure the time spent in

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



each task. This critical first step allows us to verify intu-
ition about bottlenecks and perform controlled experiments.
Keeping records of these measurements will allow retro-
spective study of the effects of decisions about where and
how to allocate resources of time and computation. The
next steps in productivity analysis are to model the task,
and use that model to guide future user decisions. While
HPC productivity certainly is affected by a complicated set
of factors, we hypothesize that there are a few measurable
tasks which account for enough of the overall time of a
project to generate a useful model.

Modeling overall productivity enables evaluating poten-
tial usage patterns quantitatively, and despite a good deal of
inherent uncertainty, we believe it can provide useful infor-
mation about the productivity effects of common decisions.
For example, a project may be faced with the decision to
either stay on a heavily-used system, or to port their code to
another system with lower queue wait times. A model can
give a guideline for how quickly the project must be ported
in order for the switch to save time overall.

In the following sections, we explain our approaches to
modeling HPC user workflow, both a complete model for
experimentation and a simplified form that is more feasible
for measurement in large real-world projects.

3 A Complete Workflow Model

Based on our interviews and survey of academic HPC
users [12], we developed a comprehensive list of user tasks
and a workflow model that describes the paths that users can
take among those tasks. Our goal was to develop a model
that could both describe the majority of projects and would
be simple enough to verify the model’s ability to represent
real workflows by discussing the model with users.

We began with a rough classification of HPC tasks
into three states: development, production running, and
post-processing and analysis. We then followed a system-
atic approach to refining the model that began with those
three states and divided them when necessary based on the
following four principles for defining task states:

1. Simplicity is important to make data gathering and
analysis possible.
In order to verify the models in interviews and support auto-
matic data gathering, the number of states and overall com-
plexity of the model must be kept to a minimum.

2. Consistency is important for understandability.
We avoided defining tasks at different levels of abstraction,
so that one task would not appear to be a component of
another.

3. Additional complexity must be justified by making
a useful productivity distinction.

For example, having two “run” states, one for production
and one for testing, is justified because time spent testing
does not directly generate results.

4. Potential outside influences on productivity should
be represented explicitly.
For example, because post-processing and execution are
sometimes performed on separate machines, those tasks
should be distinct, in order to represent the influence of
system configuration and architecture.

SW Plan

Run/Test

Add 
FeaturesSTART

END

Run
Planning

Edit: port

Edit: fix 
bugs

Edit: 
optimizePre-

process

Run

Analyze

Archive

Post-
process

Visualize

Figure 1. A Real User’s Workflow

The final model consists of the 13 task states shown in
Figure 1 (and listed in Table 1), and is annotated with all
the likely transitions between the states found in on our ob-
servation of users. We distributed the model, without the
transitions, to a sampling of HPC users and asked them
to describe their path through the tasks and time spent in
each. We found during the interview process that using this
model to guide discussion of productivity is very useful to
learn about the patterns of time spent and how users view
the tasks they perform.

We found that a project workflow vary distinctly between
users. While some workflows include 13 nodes, others only
include a few, depending on the scope of the their project.
An example of a real user workflow which includes all 13
states is shown in Figure 1. This workflow is derived from
an interview about a graduate-student project in fluid dy-
namics, whose scope included designing a program to solve
a fluids problem, compute results, and report on those re-

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



sults.
This complete model will serve as a tool for describing

user workflow and simulating the effects of changes in sys-
tem parameters or user behavior on productivity.

4 A Focused Model for Measurement

Each state in the complete workflow model presented in
Section 3 represents time spent in a task that must be mea-
sured separately, and some of the differences between the
states are not straightforward to determine automatically.
Because of the potential for such measurement to inter-
fere with the user’s actual work, it is not practical to begin
by measuring each state in detail and still study the large
projects that motivated this research.

Therefore, we defined a simplified model that captures
two of the the most important bottlenecks found in our stud-
ies of HPC users, while retaining the ability to describe a
majority of common workflows. By focusing on two im-
portant bottlenecks and consolidating the 11 other original
task states, we create a hierarchy of models, in which a more
complete model is an elaboration on our simplified model,
and there is a clear mapping between states in each model,
as shown in Table 1.

The simplified model has four task states - two “work-
ing” states and two “waiting” states. Figure 2 shows the
model, with the “working” states shaded. We chose to de-
fine “Queue and Run” and “Data Transfer” as the two wait-
ing states because they were the most-often cited produc-
tivity problems in our user interviews. These variables are
measurable, and their influence upon users behavior can be
examined through observing queue trends, and using per-
sonal interviews and surveys. The working states include
everything else, at a high level of abstraction. While this
model does not differentiate between many distinct states,
such as planning, debugging, and development, it describes
productivity problems that have not been studied in the con-
text of user workflow. The model will serve as a starting
point for our work on measurement and decision-support
tools that is discussed further in Section 6.

4.1 Data Transfer

In contemporary HPC systems, efficient data transfer be-
tween systems, and to disk and tape, is essential for sus-
tained productivity. Currently, users regularly move signif-
icant amounts of data, archiving to tape based storage, to
use their distributed compute-time allocations, and to use
unique resources at some locations. Because of the high de-
mand for limited resources, large allocations are often dis-
tributed between sites to guarantee fair access to each sys-
tem. This taxes the productivity of large projects, who must

Plan & 
Develop

Analyze

Queue 
& Run

Data 
Transfer

Figure 2. Simplified Workflow Model

Table 1. Job states in complete model, orga-
nized by containing node in simplified model.

Plan & Develop Queue & Run
Software/Project Planning Preprocess data
Debug Run Production
Port Run Tests
Optimize
Add Features
Plan Runs
Analyze Transfer Data
Analyze data manually Archive or move data
Postprocess data
Generate Visualizations

transfer large data sets over relatively slow network links to
continue their research.

Disk space and data retention policies can also cause
problems with projects that produce huge amounts of data.
HPC programs generally write to large, shared temporary
file systems, separate from the persistent user home direc-
tories, which tend to have relatively small quotas. At many
sites, files untouched for four to seven days will be in-
discriminately purged. Data backup to archival storage is
therefore essential, and depending on the data size and the
location of archival storage, this can be a workflow bottle-
neck.

For example, on a IBM Power3 system, Enzo, a cosmol-
ogy simulation using Adaptive-Mesh Refinement [7], can
produce 13 Terabytes per 18-hour run, writing a 700 Gi-
gabyte data set every 45-60 minutes. For perspective, the
DataStar system at SDSC [9], more powerful and capable
of producing more data, has a total of 180 TB of disk stor-
age for at least 126 allocations. On such systems, transfer

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



to archival storage is on the critical path for working with
Enzo.

Our studies revealed that users experience data transfer
rates between systems that range from 35 Megabytes/sec
and 350 Megabytes/sec to 1 Terabyte/sec, depending on
the systems involved and the software used for the transfer.
These transfer rates will soon be insufficient to keep up with
productivity if trends in computational power prove true.
This means that for applications with increasing data han-
dling requirements, productivity will suffer when running
on systems not designed for high end-to-end I/O speed - not
just fast processors, memory, or network links between su-
percomputers, but correspondingly fast I/O subsystems and
archival data storage systems as well.

4.2 Queue Wait Time

Supercomputer job queues are among the most-visible
and often-discussed productivity problem in HPC. There is
a tension between users, many of whom certainly dislike
time lost while waiting, and centers, whose funding is at
least partly justified by maintaining high utilization of their
systems. It is important to note that there is a class of users
who are relatively unaffected by queue wait times, because
their jobs are small and backfill or are part of a large set of
jobs with a focus on throughput.

As part of the DARPA High Productivity Computing
System (HPCS) program, there has been some discussion
recently about the effects of queueing on productivity. For
example, a well-attended birds-of-a-feather session at the
Supercomputing 2006 conference, was held to discuss cur-
rent scheduling policies at major centers in terms of their
productivity [11]. In our own research, we have come
across many instances where queue wait time has drastically
inhibited productivity. One user estimated that running one
simulation, which takes approximately three months under
current policies, would take just a week if he were given all
of a current system to run continuously - maintaining 100%
utilization.

Because supercomputer centers are not likely to start
under-allocating systems to minimize wait time, users who
are upset about wait time have few options. They can switch
to less utilized systems if they have allocation there, or alter
their job size to backfill, if their problem allows it. How-
ever, users are often reluctant to switch systems, despite po-
tential productivity improvements. Reasons cited for this
reluctance include relationships with user support and the
concern that moving to a different system would incur data
transfer costs to use visualization or archival resources at
the original site. This situation results in inefficient use of
computational resources.

5 Related Work

Most single-task aspects of HPC usage have been stud-
ied in great depth. Program performance, the motivating
purpose of HPC, is well-covered, and many tools exist that
support performance measurement and analysis. Modeling
parallel performance is also an active field, including a vari-
ety of approaches at various levels of detail. Another robust
field is batch scheduling, relevant here as it relates to queue
wait time and system utilization. In these fields, the litera-
ture is too broad to treat well here.

Some recent studies have focused on productivity of par-
allel program development. Hochstein et al. [4, 5] studied
development time among graduate students learning par-
allel programming. One use of their data was to evalu-
ate productivity differences between shared-memory pro-
gramming models and MPI. Another project builds Timed
Markov Models of programmer workflow to facilitate quan-
titative comparison of workflow steps between students us-
ing different programming models [10]. Our approach to
defining workflow is similar, but we study the workflow of
entire large projects, addressing different bottlenecks.

There are tools available to help users cope with queues,
including tools which give job run time approximations
based on the current state of the batch scheduler, as well
as tools which help establish if there are backfill opportu-
nities available on a system. In [1], Brevik et al. discuss a
technique for predicting bounds on queuing delay for jobs
submitted to shared systems, which allows users to optimize
for turnaround time by changing where they submit jobs. A
tool based on this work is available at SDSC. These tools
are useful to aid planning, but do not involve measurement
or modeling of those productivity factors. They would com-
plement tools generated by our work.

In [6], several authors discuss the problem of defining
productivity and producing metrics to compare systems and
practices. These papers present measures for the productiv-
ity of a system or of a programming methodology, which
may be useful for determining policy or initial language
choices. Most recent efforts also define productivity based
on program performance and development time, while we
choose to use a broader definition, having found evidence
that performance is not always the major roadblock for pro-
ductivity [12]. To our knowledge, our work is the first to
suggest measuring and analyzing productivity factors at a
project level across multiple systems, as is now often done
with performance.

In studies of productivity of large computational science
projects in U.S. government agencies, Post and Kendall [8]
formulated a list of common tasks and a workflow graph
describing the stages in a project. There is significant over-
lap between their tasks and the states in our full workflow
model, and we have benefited from their work. Our model

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



is intended to be measurable and to support simulation, so it
describes in greater detail the user actions that are affected
by HPC systems and policies, and leaves out more organi-
zational aspects. Our work also shows more of an emphasis
on the challenges faced by academic HPC users, such as
split allocations and shared access.

6 Future Work

The path taken by research in performance tools pro-
vides a template for building productivity tools - first, re-
liable and low-overhead measurement of the potential bot-
tlenecks must be supported, followed by modeling and anal-
ysis later, to support reasoning about complicated situations
such as multiple-site, long-term project planning and poten-
tially, procurement planning.

We have begun by characterizing the overall task of us-
ing HPC systems, and recording user experiences. Using
that information, we have developed a model that highlights
the most important bottlenecks to productivity. We are cur-
rently building measurement tools to help record time spent
blocked in unproductive states, with a goal of minimizing
extra work for a user to keep this information. Using the
simplified model from section 4, we will record data trans-
fer times and queue wait times from running projects. The
data will be used to evaluate effects of project decisions on
productivity.

Using experience gained from characterizing productiv-
ity of real projects using the simplified model, we will use
the complete workflow to perform simulation studies that
generate plausible user scenarios generated based on the
real user workflows we have recorded in our interviews,
such as the one in Figure 1. Given a metric of produc-
tivity that makes sense for the individual user whose data
was used as a template, we plan to simulate project time
lines that explore the effects of plausible differences in re-
source requirements. Ultimately, we would like to classify
a project’s sensitivity to changes in the time spent in a task
state due to outside influences.

Trends in actual use of HPC systems require a new ap-
proach to measuring their effectiveness, and we have pro-
posed an approach that involves measurement and modeling
of productivity factors that are identified through studying
user behavior. We defined models for workflow in HPC and
have proposed tools that use those models to help users ana-
lyze their productivity and cope with the challenges of using
HPC for research.

References

[1] J. Brevik, D. Nurmi, and R. Wolski. Predicting bounds on
queuing delay for batch-scheduled parallel machines. In
PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel program-
ming, pages 110–118, New York, NY, USA, 2006. ACM
Press.

[2] J. Carver, L. Hochstein, R. Kendall, T. Nakamura,
M. Zelkowitz, V. Basili, and D. Post. Observations about
software development for high end computing. CTWatch
Quarterly, 2(4A), Nov. 2006.

[3] R. Harkness. personal communication. Jan. 2007.
[4] L. Hochstein, J. Carver, F. Shull, S. Asgari, V. Basili, J. K.

Hollingsworth, and M. Zelkowitz. HPC programmer pro-
ductivity: A case study of novice HPC programmers. In Pro-
ceedings of ACM/IEEE Supercomputing Conference, 2005.

[5] L. Hochstein, T. Nakamura, V. Basili, S. Asgari,
M. Zelkowitz, J. K. Hollingsworth, F. Shull, J. Carver,
M. Voelp, N. Zazworka, and P. Johnson. Experiments to
understand HPC time to development. CTWatch Quarterly,
2(4A), Nov. 2006.

[6] Special issue on HPC productivity. International Journal of
High Performance Computing Applications, 18(4), 2004.

[7] B. W. O’Shea, G. Bryan, J. Bordner, M. L. Norman, T. Abel,
R. Harkness, and A. Kritsuk. Introducing Enzo, an AMR
cosmology application. In T. Plewa, T. Linde, and V. G.
Weirs, editors, Adaptive Mesh Refinement - Theory and Ap-
plications, Springer Lecture Notes in Computational Sci-
ence and Engineering, 2004.

[8] D. Post and R. Kendall. Large-scale computational scientific
and engineering project development and production work-
flows. CTWatch Quarterly, 2(4B), Nov. 2006.

[9] SDSC User Services. SDSC DataStar user guide. website.
www.sdsc.edu/us/resources/datastar/.

[10] V. Shah, J. R. Gilbert, D. Mizell, and A. Funk. Modelling
hpc workflows with timed markov models. CTWatch Quar-
terly, Oct. 2006.

[11] A. Snavely and J. Kepner. Is 99% utilization of a supercom-
puter a good thing? In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 37, New
York, NY, USA, 2006. ACM Press. Birds-of-a-feather ses-
sion.

[12] N. Wolter, M. O. McCracken, A. Snavely, L. Hochstein,
T. Nakamura, and V. Basili. What’s working in HPC: In-
vestigating HPC user behavior and productivity. CTWatch
Quarterly, 2(4A), November 2006. Supercomputing 2006
Print Issue.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007


