
Developing a Computational Science IDE for HPC Systems

David E. Hudak, Neil Ludban, Vijay Gadepally, Ashok Krishnamurthy
Ohio Supercomputer Center

{dhudak, nludban, vijayg, ashok}@osc.edu

Abstract

Software engineering studies have shown that
programmer productivity is improved through the use
of computational science integrated development
environments (or CSIDE, pronounced “sea side”) such
as MATLAB. ParaM is a CSIDE distribution which
provides parallel execution of MATLAB scripts for
HPC systems. ParaM runs on a range of processor
architectures (e.g., x86, x64, Itanium, PowerPC) and
its MPI binding, known as bcMPI, supports a number
of interconnect architectures (e.g., Myrinet and
Infinband). In this paper, we describe our goals for
the ParaM project, the current status of the project and
report on initial software engineering successes and
challenges.

1. Introduction

The adoption of traditional computer science tools
(i.e., C and FORTRAN programming with compilers
like gcc, UNIX debuggers like gdb and profilers like
gprof) has been problematic for computational
scientists. Mastering the complexity of these tools is
often seen as a diversion of energy that could be
applied to the study the given scientific domain.
Many computational scientists instead prefer
computational science integrated development
environments (or CSIDE, pronounced “sea side”), such
as MATLAB or Mathematica.

The popularity of CSIDEs in desktop environments
has lead to the creation of many scientific solutions
(coded as CSIDE commands commonly called
“scripts”) and, more importantly, the training of many
computational scientists. It would be a great boon for
computational science if those solutions and that
expertise could be applied to our largest computational
systems, also known as high performance computing
(HPC) systems.

At the Ohio Supercomputer Center (OSC), we have
developed a CSIDE distribution for HPC systems
called ParaM. ParaM has been installed on a number
of HPC systems at OSC and other HPC centers. In this
paper, we recap the advantages of CSIDEs for
computational science, describe the design of ParaM

and analyze the development of ParaM as a software
engineering project.

2. Computational Science IDE’s (CSIDE)

A computational science integrated development
environment (abbreviated as CSIDE and pronounced
“sea side”) is defined as suite of software tools,
including (1) a numeric interpreter with high-level
mathematics and matrix operations, (2) support for
domain specific extensions (e.g., signal and image
processing, control systems, operations research), (3)
available graphics and visualization capabilities, and
(4) a common user interface (typically including an
editor) for interacting with the various tools.
Commercial examples of CSIDEs include MATLAB,
Maple and Mathematica. Notable open-source
examples include GNU Octave (extended with
OctaveForge and GNUPlot), Scilab and Python
(extended with SciPy, NumPy, iPython and
Matplotlib).

CSIDEs are used as alternatives to traditional
programming languages such as FORTRAN and C.
Advantages of using a CSIDE have been enumerated
for educational purposes [8] [7]. These advantages
include the interactive nature of the interpreter and the
tight integration between the various tools in the
CSIDE. Specifically, interactivity provides intuitive
debugging and incremental development support as
well as run-time inspection of complex data that may
need sophisticated analysis (such as visualization) for
validation. Tight integration between CSIDE tools
removes the burden on the computational scientist to
learn a number of different software packages and their
(potentially complex) interactions.

3. Extending CSIDEs to HPC Systems

As CSIDEs have spread in popularity, they have
been applied to data sets of increasing scale. In order
to handle the necessary data processing requirements,
users have written CSIDE scripts designed to work in
parallel on a single data set. In order to support such
parallel scripts, parallel interpreters have been
developed. These parallel interpreters are typically

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

composed of (1) a sequential interpreter from a CSIDE
(2) a job control mechanism for launching multiple
copies of the interpreter on multiple processors and (3)
communication libraries for interpreters to exchange
results.

Software packages that provide parallel
interpretation are informally referred to here as HPC
CSIDEs. While not providing comprehensive CSIDE
functionality on an HPC system, these parallel
interpreters allow users to port scripts developed within
a CSIDE to parallel execution environments, such as
HPC systems.

3.1. Examples of HPC CSIDEs

For the remainder of this paper, we will restrict our
discussions of HPC CSIDEs to ones executing scripts
similar to MATLAB. There are a large number of both
commercial and open source packages available to
provide parallel interpretation for MATLAB scripts.
For example, twenty-seven separate parallel interpreter
systems based on MATLAB have been catalogued [3]
in addition to our own project, ParaM. Commercial
projects include Interactive Supercomputing Star-P and
the Mathworks’ Distributed Computing Toolbox
(DCT) and Engine (DCE).

MatlabMPI [1] and pMatlab [5] are popular open
source packages for parallel interpretation. MatlabMPI
supports a “message passing” programming model for
MATLAB scripts. pMatlab supports a partitioned
global address space (PGAS) programming model and
relies on MatlabMPI. Both libraries are composed
entirely of MATLAB scripts and can execute anywhere
MATLAB does. However, the message passing
constructs are implemented via file reads and writes to
a globally shared file system, which incurs a high
latency for messages.

3.2. HPCS findings supporting CSIDEs

Software engineering studies from the DARPA
HPCS program (http://www.highproductivity.org/)
point to the need for a CSIDE that provides access to
HPC resources. Carver et. al. [2] describe a set of
observations about HPC software development teams,
including: (1) Development of science and code
portability are of primary concern, (2) High turnover in
development teams and (3) Iterative, agile
development. Traditional CSIDEs provide interactive
access, run-time data inspection and high-level source
code (scripts) written at a higher level and (typically)
easier for new developers to understand.

Wolter et. al. [10] found that time to solution is a
limiting factor for HPC software development. Use of

a CSIDE often reduces time to first solution when
compared to traditional FORTRAN or C programming.
Wolter et. al. [10] also found that steep learning curves
associated with parallel tools inhibit their use by
computation scientists. This is reminiscent of
arguments supporting CSIDEs in sequential
environments [7], namely, that computational scientists
prefer an integrated environment with previously
designed, well-understood interactions between tools.

Funk et. al. [4] describe the relative development
time productivity metric (RDTP). HPC Challenge [6]
is a series of benchmarks designed to exercise various
aspects of an HPC system. The RDTP metric is
applied to various implementations HPC benchmarks,
and a CSIDE (MATLAB extended with pMatlab)
implementation scored higher than C+MPI for three of
the four benchmarks. These data indicate that a
CSIDE can improve parallel programmer productivity.

4. ParaM

4.1. Overview and status

At OSC, a number of research scientists have been
using MatlabMPI for parallel interpretation of
MATLAB scripts. These researchers had a number of
additional requests, including support for processor
architectures not supported by MATLAB (e.g.,
Itanium), support for high-speed interconnects (e.g.,
Myrinet and Infiniband) and simplified installation.

In order to meet these requests, a development team
at OSC developed ParaM. ParaM is a software
distribution (a collection of internally and externally
developed software packages) for parallel
interpretation of explicitly parallel MATLAB
interpreter scripts. ParaM can use existing MATLAB
interpreter installations or is capable of using GNU
Octave. It does not include full CSIDE functionality
(for example graphing or visualization support is not
included with Octave), but could be extended to
provide such functions.

4.2. ParaMake package installer

ParaM is distributed as source code and is
simultaneously developed on a range of UNIX
platforms (Linux, NetBSD, Mac OS X). However,
differences in the existence, version and/or installation
location of software as well as varying linking
conventions greatly complicate installation from
source. In order to address these complications, certain
conventions were adopted. First, a standard
installation procedure was defined (a top level
“ParaM” installation directory in which standard UNIX

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

distribution directories such as “bin”, “etc”, “include”,
“lib” and “man” were placed). Second, GNU
automake, autconf and libtool were adopted for all
library construction. Finally, if the software needed to
meet these conventions was not available on the
system, it should be installed as part of ParaM.

In order to automate the process of locating,
downloading, patching source (when needed),
configuring, building and installing these packages, an
installation utility called ParaMake was written. The
goal was for end users (or system administrators) to
customize ParaMake configuration files to complete a
given installation. These configurations specify which
toolchain, MPI library, interpreter and job control
system to use. ParaMake installs UNIX tools
(automake, autoconf, libtool), message passing
libraries (OpenMPI), interpreter and support libraries
(GNU Octave and fftw), communication support
(bcMPI for message passing model, pMatlab for PGAS
model), regression tests, examples and sample job
control scripts.

ParaMake is only a package installer, not a full
package manager like RPM (http://www.rpm.org)
which is capable of identifying versions of installed
packages and updating them if newer versions exist.
We elected to write ParaMake because we wanted an
installer that could be made to run quickly on many
platforms (ParaMake is written entirely in python) and
had simple configuration files that were intuitive to
customize.

4.3. bcMPI

bcMPI is a software library that implements a
bridge design pattern between an interpreter and an
MPI library (both the interpreter and choice of MPI
library are interchangeable). Our goals included
support for (1) either MATLAB or Octave interpreters,
(2) different MPI implementations and (3) support
existing API’s for message passing, e.g., MatlabMPI
[5] API and MATLAB’s Distributed Computing
Toolkit (DCT) message passing API.

bcMPI’s software organization is presented in
Figure 1. At its core, bcMPI is a C library with a
collection of data types (matrices and structs) that
support MATLAB and Octave data types. It also
contains functions to serialize those data types to MPI
data types and to exchange their values via MPI. The
core library is supplemented by separate “bindings” to
MATLAB and Octave. A binding consists of a set of
external-interface functions (MEX functions for
MATLAB and OCT functions for Octave) and a
toolbox (i.e., a set of interpreter scripts), which is
directly called by the user.

Figure 1. bcMPI software architecture

bcMPI is designed to supplement, not replace,
MatlabMPI. A developer can use MatlabMPI on a
multicore PC or departmental cluster to interactively
develop and debug their parallel interpreter scripts.
Since the same API is provided by bcMPI, the user can
run scripts on a large shared cluster with a high-
performance interconnect and a batch environment. In
this way, the investment in code development time is
preserved.

4.4. pMATLAB/bcMPI

As bcMPI supports the MatlabMPI API, it is
possible to run MatlabMPI applications using bcMPI.
In order to improve the performance of PGAS
programming in pMatlab, the pMatlab library was
incorporated into ParaM as a ParaMake package.
Informally, this arrangement is known as “pMatlab
over bcMPI” and abbreviated as pMatlab/bcMPI. Note
that pMatlab/bcMPI is provided in addition to bcMPI,
so users can choose between (or even combine)
message passing and PGAS programming models.
Also, the entire pMatlab API is preserved, so that users
may develop their scripts on PC’s with the standalone
pMatlab distribution, and then run them on an HPC
system using pMatlab/bcMPI.

The RandomAccess benchmark is one of the HPC
Challenge benchmarks and designed to test remote
memory latency for fine-grained accesses.
RandomAccess reports its results in Giga-Updates per
Second (aka GUPS). Bliss and Kepner [1] reported a
GUPS rate forty-six (46) times higher for C+MPI
relative to pMatlab. The majority of this performance
discrepancy is likely due to the latency of the
filesystem used for message passing.

In order to compare pMatlab/bcMPI, C+MPI and
pMatlab implementations of RandomAccess were run

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

on an AMD Opteron cluster at Ohio Supercomputer
Center. The size of the RandomAccess table was 2^29
elements (4GB/node) and runs were conducted with 4,
8 and 16 processors using a gigabit Ethernet
interconnect. The raw GUP rates for 16 processors are
included in Table 1. The relative performance of
C+MPI vs. pMatlab/bcMPI is presented in Table 2.
Note that pMatlab/bcMPI performs close to (or better
than) the GUP rate for C+MPI. Also, the GUP rate
reported by pMatlab in included in Table 1 for
completeness, but is not indicative of the maximum
performance possible with standalone pMatlab, as the
file system parameters on the test machine were not
optimized for pMatlab.

Table 1. RandomAccess results

Language Total GUPs
C+MPI 1.56E-03
pMatlab/bcMPI 1.86E-03
pMatlab 5.67E-07

Table 2. Relative GUPS performance

Processors C+MPI/pMatlab+bcMPI
4 1.51
8 1.14
16 0.84

5. Software engineering observations

ParaM is intended to support a wide variety of
platforms and multiple parallel APIs. The bcMPI
software architecture has allowed us to rapidly deploy
installations of bcMPI on a range of processors (AMD,
Power, Itanium), MPI libraries (MPICH, MPICH2,
OpenMPI) and interconnects (gigabit ethernet,
Myrinet, Infiniband) out of a single source tree. In
addition, support was added for the MatlabMPI API by
extending the bindings with additional calls (no
changes to the core library were required). Support for
additional message passing and/or PGAS APIs (such
as those provided by MATLAB’s Distributed
Computing Toolbox) can be added without changes to
the bcMPI infrastructure.

ParaM is intended to support installation by users
without UNIX system programming experience.
ParaMake has made it possible for users to install
ParaM automatically and without the need for root
access on the target HPC system. In this regard, it can
be considered a success. However, ParaMake has
fallen short of providing an installation utility simple
enough for non-expert users to customize for their

systems. Such users are able to run an existing
ParaMake installation, but lack the UNIX system
experience to diagnose errors that occur during the
build and installation process. Rather than spend
(potentially large amounts of) development time trying
to make ParaMake more sophisticated, we found it to
be more effective to get an expert for a few hours on
each new machine. The important part is that the
entire process can be captured in a single configuration
file for any user to repeat the installation.

Lastly, ParaM was designed with pragmatic
software engineering practices such as source code
management via version control (i.e., subversion),
installation of regression tests and a consistent source
code style. In the initial dissemination of ParaM to
computational scientists, a widespread lack of
knowledge of such tools and practices was observed.
Note that this issue has been previously acknowledged
and solutions have been proposed [9].

6. Conclusions and future work

ParaM is a software distribution developed at OSC
that provides a computational scientist with the ability
to run explicitly parallel MATLAB scripts on multiple
processors. ParaM’s message passing library, bcMPI,
has a modular design that allows support for multiple
interpreters (MATLAB and GNU Octave) across a
range of HPC systems. In order to support
computational scientists who may not be experts in
UNIX system administration details, a package
installer named ParaMake is included with the
distribution. However, ParaMake, while automating
much of the traditional UNIX configuration and build
process, still requires extensive system knowledge to
configure.

There are multiple avenues for future work.
ParaMake can be improved. The ability to enable
advanced MPI features, such as one-sided operations,
would improve the performance for pMatlab scripts.
Finally, HPC CSIDEs provide an integrated, high-level
interface for data parallel mathematical operations.
But, in order for computational scientists to develop
parallel scripts that scale to large numbers of
processors, user-friendly mechanisms for performance
feedback must also be provided.

7. Acknowledgements

Thanks to Jeremy Kepner and the staff at MIT
Lincoln Labs for providing a pMATLAB
implementation of the HPC Challenge benchmarks.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

8. References

[1] N. Bliss and J. Kepner, “pMatlab Parallel Matlab
Library”, International Journal of High Performance
Computing Applications: Special Issue on High Level
Programming Languages and Models, J. Kepner and H.
Zima (editors), Winter 2006 (November)

[2] J. C. Carver, L. M. Hochstein, R. P. Kendall, T.
Nakamura, M. V. Zelkowitz, V. R. Basili, D. E. Post,
“Observations about Software Development for High End
Computing”, CTWatch Quarterly, Volume 2, Number 4A,
November 2006.

[3] A. Edelman, “Parallel MATLAB Survey”,
http://www.interactivesupercomputing.com/reference/Paralle
lMatlabsurvey.htm

 [4] A. Funk, V. Basili, L. Hochstein, J. Kepner, “Analysis
of Parallel Software Development using the Relative
Development Time Productivity Metric”, CTWatch
Quarterly, Vol. 2, No. 4A, November 2006.

[5] J. Kepner, and S. Ahalt., “MatlabMPI”, Journal of
Parallel and Distributed Computing, 64(8):997–1005, Aug
2004.

[6] P. Luszczek, J. Dongarra, J. Kepner, “Design and
implementation of the HPC Challenge Benchmark Suite”,
CTWatch Quarterly, Vol. 2, No. 4A, November 2006.

[7] P. Webb, “Response to Wilson: Teach Science and
Software Engineering with Matlab”, IEEE Computational
Science and Engineering, vol. 04, no. 2, Apr-Jun, 1997, pp.
4-5.

[8] G. Wilson, “What Should Computer Scientists Teach to
Physical Scientists and Engineers?”, IEEE Computational
Science and Engineering, vol. 3, no. 2, June 1996, pp. 46-55.

[9] G. Wilson, “Where's the Real Bottleneck in Scientific
Computing?”, American Scientist, Jan.-Feb. 2006.

[10] N. Wolter, M. O. McCracken, A. Snavely, L. Hochstein,
T. Nakamura, V. Basili, “What's Working in HPC:
Investigating HPC User Behavior and Productivity”,
CTWatch Quarterly, Volume 2, Number 4A, November
2006.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

