

The Trilinos Software Lifecycle Model

James M. Willenbring, Michael A. Heroux, Robert T. Heaphy
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185

{jmwille, maherou, rheaphy}@sandia.gov

Abstract

The Trilinos Project [1, 2] is an effort to
facilitate the design, development, integration and
on-going support of mathematical solver libraries.
Efforts range from research and development of new
algorithms to proof-of-concept of new and existing
algorithms to eventual production use of solver
libraries on a variety of computer systems across a
broad set of applications. Software quality
assurance and engineering (SQA/SQE) play an
integral role in the project. Although many formal
software lifecycle models exist, no single model can
address all Trilinos developer needs since our
requirements for rigor change as a particular
Trilinos package matures. In this report we present a
three-phase promotional lifecycle model that closely
matches the needs and realities of Trilinos
development.

1. Introduction

A major component of any software project is a
software lifecycle. Whether a model is formally
defined, or the lifecycle occurs in an ad hoc fashion,
it does exist. In this document we define a lifecycle
model, really a meta-model, that accurately captures
the reality of our software engineering environment.

Although many formal software lifecycle models

exist, the environment in which Trilinos software is
developed is somewhat unique and challenging when
compared to the large body of commercial software
environments. On the one hand, we are tasked to
develop algorithms and software that are leading-
edge, with the goal of solving problems that were
previously intractable. On the other, we are required
to deliver software that can eventually be used to
certify critically important engineering systems.

An added dimension is that Trilinos is composed
of packages: self-contained pieces of software that
are developed by semi-independent small teams.
Each package matures at its own pace, typically
evolving from a small algorithms study project to
becoming a widely-used piece of software, embedded
in multiple applications. Furthermore, the
requirements for rigor change as a particular Trilinos
package matures.

In this paper we present a three-phase
promotional lifecycle model that we believe closely
matches the needs and realities of Trilinos
developers. It allows small algorithms-focused
efforts to develop in a dynamic, customer-interactive
environment while encouraging more mature
packages to drive toward a fully-certified software
environment that can withstand the rigorous
requirements necessary for production computing.

As is true with many SQA/SQE issues, Trilinos
packages are allowed to define individualized
lifecycles. However, most packages choose not to.
By default, packages adopt the three-phase
promotional lifecycle model described below. The
Trilinos Software Lifecycle Model recognizes the
natural transition that most Trilinos packages follow
from being a research project to a production quality
code. Different packages are expected to be at
different points along this lifecycle model. The three
phases are:

1) Research
2) Production Growth
3) Production Maintenance

Each phase contains a different lifecycle model

and different required processes. Moving from one
phase to another is facilitated by a promotional event.
This model is independently applied to different
major versions of Trilinos packages. Below is a
description of what is required in each phase and
what constitutes a promotional event.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

2. Lifecycle Phase 1: Research

In this first phase of development, conducting
research is the primary goal; producing software is
potentially incidental to research. Any software that
is produced is typically a “proof of concept” or
prototype. Software that is in this phase may only be
released to selected internal customers to support
their research or development and should not be
treated as production quality code.

2.1. Phase 1 Required Practices

The required practices and processes for this
phase are appropriate for efficient research. A list of
these practices and processes can be found in the
Trilinos Developer Guide Part II [3]. Here are a few
important points:

1) The research proposal is the project plan.
2) Software is placed under configuration

control as needed to prevent loss due to
disaster.

3) Peer reviewed published papers are primary
verification and validation.

4) The focus of testing is a proof of
correctness, not software.

5) Periodic status reports should be produced.
6) A lab notebook, project notebook, or

equivalent is the primary artifact.

Note that software in the research phase need not
be written in the “target” language, or support all
target machines, and usually has limited error
checking and recovery.

In the research phase, the risk is low (risks are
primarily technical and not mitigated by formality of
processes). The level of formality is low.

2.2. Phase 1 to Phase 2 Promotional Event

When a package reaches a point at which it is
ready to move from a research to production phase,
which often takes place when package developers are
ready to begin ramping up in preparation for a
release, a (possibly virtual) meeting takes place
involving package developers, and possibly other
stakeholders. At this meeting a number of issues are
covered including:

Risk Assessment:

1) What are the package’s primary technical
and project management risks?

2) How can these risks be mitigated?

Gap Analysis:

1) Which practices and processes must be
added or improved to get the package into a
releasable state?

2) What special actions or training will be
required?

3) What is the target date for complying with
the level of practices and processes required
for release?

Promotion Decision:

1) Considering the results of the risk
assessment, gap analysis, and other data,
will the package be promoted to Phase 2?

2) What is the target date for releasing the
package?

After the meeting, minutes should be sent to the

package developer mail list and the Trilinos-
framework list. Minimally, these minutes should
provide answer to the questions listed above and note
other important topics that were discussed.

3. Lifecycle Phase 2: Production Growth

The goal of the Production Growth phase is to
elevate the package to a releasable product, with the
eventual goal of satisfying the Advanced Scientific
Computing (ASC) Software Quality Plan [4], at a
minimum. More specifically, in this phase the goal is
to make the software product is suitable for use by
highly skilled users.

3.1. Phase 2 Required Practices

The second phase of development requires both a
larger number of practices and processes and an
increased level of formality, while maintaining a
flexible development environment. The required
practices and processes can be found in the Trilinos
Developer Guide Part II. Here are a few important
points:

1) Agile methods (with associated lifecycles)
are encouraged, for example the practices
and processes promoted by Extreme
Programming [5].

2) All essential ASC SQE practices performed
at an appropriate level (predetermined

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

during promotion event from the research
phase).

3) Artifacts should naturally “fall out” from
SQE practices and periodic status reviews
and management reports.

4) Process improvement and metrics are
appropriate.

This phase may be cyclic (spiral, etc.) as new

algorithms become incorporated.
The software may not yet support all intended
missions or platforms.

The risk level is medium (the technical risks are
reduced and the total risk is more project
management oriented such as schedule, budget,
staffing, etc.). The default level of formality is
medium.

3.2. Attaining Releasable Status

Once the required level of practices and
processes has been met for Phase 2, or a waiver has
been obtained from the Trilinos Project Leader for
any items that do not apply (all or in part) to a
particular package, an email indicating that the
package is ready for release is sent to the trilinos-
framework list. The email should include
attachments or links with artifacts supporting that
each of the required practices and processes have
been implemented for the package. The Trilinos
Project Leader or a designee will review the artifacts
and determine if the package is ready for release as a
part of Trilinos. If not, that individual will ask for
additional artifacts for any practice or process that
does not appear to have sufficient documentation.
After the set of artifacts has been approved, the
package will be eligible for release as a Trilinos
package beginning with the next release.

3.3. Phase 2 to Phase 3 Promotional Event

After a package has been under long-term
development, and is reaching a point where its
features are mature, it becomes necessary to provide
a more complete set of artifacts than are typically
produced by Agile methods. In order to facilitate
final post-delivery maintenance, especially for the
case where the original development team is not
longer available to support the package, we provide a
third phase.

The promotional event elevating a package to
Phase 3 should be triggered by a point in the project
when the focus of modifications turns from new
development to minor enhancements and bug fixes.

At this point, it is appropriate to prepare for the long-
term future of the package. This promotional event
will be initiated by the development team, a manager,
or possibly by the Trilinos Project Leader. The event
itself is again a (possibly virtual) meeting involving
package developers and optionally other stakeholders
including members of management, customers, other
Trilinos developers, or potential future package
maintainers.

Several issues need to be addressed at the
meeting including:

Risk Assessment:

1) What are the package’s primary technical
and project management risks?

2) How can these risks be mitigated?

Gap Analysis:

1) Which practices and processes must be
added or improved to get the package into a
maintenance ready state?

2) What is the target date for complying with
the required level of practices and
processes?

Promotion Decision:

1) What is the medium to long-term funding
outlook for the package?

2) Who is going to provide long-term
maintenance services for the project? (One
or more of the original developers, or a
different group?)

3) If funding is not likely to be available for
future maintenance, current customers
should be notified so they have a chance to
offer continued funding if it is in their best
interest. A list of these customers should be
produced.

4) If the customer base of the package is small
or the package has been replaced with
another code, the development team may
consider retiring the code rather than
moving to the third development phase.
Any such decision should be approved by
customers and management.

5) Considering the answers to the above
questions, and other available data, will the
package be promoted to Phase 3?

6) What is the target date (if any) for turning
the package over to the long-term
maintenance team?

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Note that packages that have been retired without
attaining the level of practices and processes required
for a maintenance ready state should not be included
in future Trilinos releases.

After the meeting, minutes should be sent to the
package developer mail list and the trilinos-
framework list. Minimally, these minutes should
provide answer to the questions listed above and note
other important topics that were discussed.

4. Lifecycle Phase 3: Production
Maintenance

The goal of the third and final phase of
development is robust software suitable for typical
end uses. At this point, the requirements and a
prototype software foundation are stable. However,
the Agile methods that served well in Phase 2 are not
sufficient to support product maintenance during the
coming decades of software use where typically only
adaptive maintenance, in response to computer
system changes, will be performed. A more
complete set of artifact is required, and the software
itself will require changes to improve maintainability.
In the extreme case, it may even make sense to
rewrite large portions of the package.

4.1. Phase 3 Required Practices

The full set of required practices and process for
Phase 3 can be found in the Trilinos Developer Guide
Part II. We include important highlights here.

1) After achieving maintenance ready status,
the package may (as determined during the
promotion event) be handed over to another
party during this phase for continued support
and development.

2) If the code is transferred to a different party,
the ownership of the design is not
necessarily transferred. The design owner
must attend meetings concerning
requirements changes and potential design
changes.

3) A widely-accepted lifecycle model such as
the Waterfall or Unified Process [6] methods
is used.

4) End of life planning is a key component
during this phase. In particular, the software
must have good compliance with SQE
practices and internal documentation must
be formal (UML is suggested).

5) SQE practice compliance and solid
documentation will help to ensure a

successful transfer of the code, and must be
completed whether a transfer is currently
planned or not.

The risk level is low (almost totally project

management risks, which can be mitigated by
appropriate process formality). The default level of
formality is high (particularly if the project may be
handed off to another party).

4.2. Achieving Maintenance Ready Status

Implementing the required level of practices and
processes for Phase 3 means that the package has
achieved maintenance-ready status. In particular, the
package must support all formal missions and
required platforms, be “user-proof”, and user support
(training, documentation, “bug reporting” and help
desk) must be available.

Once the required level of practices and
processes has been met for Phase 3, or a waiver has
been obtained from the Trilinos Project Leader for
any items that do not apply (all or in part) to a
particular package, an email is sent to the trilinos-
framework list. The email should include
attachments or links with artifacts supporting that
each of the required practices and processes have
been implemented for the package. The Trilinos
Project Leader or a designee will review the artifacts
and determine if the package has met all of the
requirements, or ask for additional artifacts for any
practice or process that does not appear to have
sufficient documentation.

After the set of artifacts has been approved, and
an individual or a group has been assigned long-term
maintenance responsibilities, the package will
continue to be eligible for release as a Trilinos
package, provided the level of practice and process
rigor is maintained and long-term maintenance
responsibilities are assigned to someone. Packages
that have not met these requirements and are not in
the process of doing so should not be included in
future Trilinos releases.

5. Exceptional Cases

Although most of the work in Trilinos falls under
the above phases, there are some exceptions. We
discuss two of these here.

5.1. Isolated Lower Phase Work

Often a package that is in Phase 2 (or Phase 3)
will have a small subproject that is research oriented

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

and is most effectively developed as a Phase 1 (or
Phase 2) effort. We allow this exception as long as
the subproject work is clearly isolated from the main
package source and is reasonably guaranteed to not
destabilize the building or execution of the core
package capabilities. Isolation can be achieved by
one or more of several techniques:

1) Subdirectories: All lower phase software is
contained in specially-designated
subdirectories and is only activated by
special compilation procedures.

2) Interface adapters: Lower phase software is
self-contained in new class files and
accessed via polymorphism of abstract
interface mechanisms or similar techniques
that are not necessary for basic operation.

3) Conditional compilation directives: Code
that is lower phase is conditionally compiled
by define statements. By default, this code
should not be compiled. Although
acceptable, conditional compilation is
discouraged in general, unless the lower
phase effort is being done in a special
branch of the software repository.

5.2. Externally-developed Packages

Trilinos provides several mechanisms for
independently-developed software packages to be
used in combination with Trilinos. By default such
packages are considered to be in Phase 1, and must
go through the promotional events described here to
reach a higher level phase. Note that this policy does
not affect libraries such as BLAS[7], which are used
by Trilinos to provide implementation of interfaces
but are not considered Trilinos packages in their own
right. These third-party libraries are certified as part
of the package test suite for a package that uses them.

6. Conclusions and Future Work

In order to support a broad range of software
engineering efforts within the Trilinos Project, we
have developed a software lifecycle meta-model. In
our study of existing literature, our software
environment is not entirely unique. However, our
desire to provide an environment that supports
development from the inception of high-risk, high-
payoff mathematical software to eventual production-
quality tools is unusual.

The Trilinos Software Lifecycle Model is a 3-
phase meta-model, supporting the spectrum of needs
from the early research-oriented phase of leading
edge mathematical software to the production quality
required for reliable modeling and simulation

software. By providing these three phases we allow
new packages to evolve quickly, or fail if ideas do
not bear fruit, and yet provide motivation and
direction for package teams to increase the rigor of
their practices by identifying promotional events to
reach the next phase.

Because this 3-phase model is newly defined, we
will likely need to adjust its description. In
particular, although we have had many packages
advance from Phase 1 to Phase 2, no package has
been elevated to Phase 3 because all Trilinos
packages are still under active development using
agile-like practices and processes. As a result, future
work includes use of the promotional events from
Phase 2 to 3, and the practices of Phase 3.

7. References

[1] M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu, T.
Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A.
Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, and
A. Williams, "An Overview of Trilinos," ACM
Transactions on Mathematical Software, vol. 31, pp. 397-
423, 2005.

[2] M. A. Heroux, "Trilinos Home Page."
http://trilinos.sandia.gov, 2004.

[3] M. A. Heroux, J. M. Willenbring, and R. Heaphy,
"Trilinos Developers Guide Part II: ASCI Software Quality
Engineering Practices Version 1.0," Sandia National
Laboratories 2003.

[4] R. R. D. Edward A. Boucheron, H. Carter Edwards,
Molly A. Ellis, Christi A. Forsythe, Robert Heaphy, Ann L.
Hodges, Constantine Pavlakos, Joseph R. Schofield, Judy
E. Sturtevant and C. Michael Williamson, "Sandia National
Laboratories Advanced Simulation and Computing (ASC)
Software Quality Plan Part 2: Mappings for the ASC
Software Quality Engineering Practices Version 1.0,"
Sandia National Laboratories, Albuquerque, NM
SAND2004-6601, January 2005 2005.

[5] K. B. w. C. Andres, Extreme Programming Explained,
Second ed. Boston: Addison-Wesley, 2005.

[6] G. B. Ivar Jacobson, James Rumbaugh, James
Rumbaugh, Grady Booch, The Unified Software
Development Process. Boston: Addison-Wesley, 1999.

[7] S. Blackford, J. Demmel, J. Dongarra, I. Duff, S.
Hammarling, G. Henry, M. Heroux, L. Kaufman, A.
Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C.
Whaley, "An Updated Set of Basic Linear Algebra
Subprograms (BLAS)," ACM Transactions on
Mathematical Software, vol. 28, pp. 135-151, 2002-06
2002.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

